预测患者报告的结果指标:人工智能引导的患者偏好预测器的范围界定综述。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1477447
Jeremy A Balch, A Hayes Chatham, Philip K W Hong, Lauren Manganiello, Naveen Baskaran, Azra Bihorac, Benjamin Shickel, Ray E Moseley, Tyler J Loftus
{"title":"预测患者报告的结果指标:人工智能引导的患者偏好预测器的范围界定综述。","authors":"Jeremy A Balch, A Hayes Chatham, Philip K W Hong, Lauren Manganiello, Naveen Baskaran, Azra Bihorac, Benjamin Shickel, Ray E Moseley, Tyler J Loftus","doi":"10.3389/frai.2024.1477447","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The algorithmic patient preference predictor (PPP) has been proposed to aid in decision making for incapacitated patients in the absence of advanced directives. Ethical and legal challenges aside, multiple practical barriers exist for building a personalized PPP. Here, we examine previous work using machine learning to predict patient reported outcome measures (PROMs) for capacitated patients undergoing diverse procedures, therapies, and life events. Demonstrating robust performance in predicting PROMs for capacitated patients could suggest opportunities for developing a model tailored to incapacitated ones.</p><p><strong>Methods: </strong>We performed a scoping review of PubMed, Embase, and Scopus using the PRISMA-ScR guidelines to capture studies using machine learning to predict PROMs following a medical event alongside qualitative studies exploring a theoretical PPP.</p><p><strong>Results: </strong>Sixty-eight studies used machine learning to evaluate PROMs; an additional 20 studies focused on a theoretical PPP. For PROMs, orthopedic surgeries (<i>n</i> = 33) and spinal surgeries (<i>n</i> = 12) were the most common medical event. Studies used demographic (<i>n</i> = 30), pre-event PROMs (<i>n</i> = 52), comorbidities (<i>n</i> = 29), social determinants of health (<i>n</i> = 30), and intraoperative variables (<i>n</i> = 124) as predictors. Thirty-four different PROMs were used as the target outcome. Evaluation metrics varied by task, but performance was overall poor to moderate for the best reported scores. In models that used feature importance, pre-event PROMs were the most predictive of post-event PROMs. Fairness assessments were rare (<i>n</i> = 6). These findings reinforce the necessity of the integrating patient values and preferences, beyond demographic factors, to improve the development of personalized PPP models for incapacitated patients.</p><p><strong>Conclusion: </strong>The primary objective of a PPP is to estimate patient-reported quality of life following an intervention. Use of machine learning to predict PROMs for <i>capacitated</i> patients introduces challenges and opportunities for building a personalized PPP for <i>incapacitated</i> patients without advanced directives.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1477447"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor.\",\"authors\":\"Jeremy A Balch, A Hayes Chatham, Philip K W Hong, Lauren Manganiello, Naveen Baskaran, Azra Bihorac, Benjamin Shickel, Ray E Moseley, Tyler J Loftus\",\"doi\":\"10.3389/frai.2024.1477447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The algorithmic patient preference predictor (PPP) has been proposed to aid in decision making for incapacitated patients in the absence of advanced directives. Ethical and legal challenges aside, multiple practical barriers exist for building a personalized PPP. Here, we examine previous work using machine learning to predict patient reported outcome measures (PROMs) for capacitated patients undergoing diverse procedures, therapies, and life events. Demonstrating robust performance in predicting PROMs for capacitated patients could suggest opportunities for developing a model tailored to incapacitated ones.</p><p><strong>Methods: </strong>We performed a scoping review of PubMed, Embase, and Scopus using the PRISMA-ScR guidelines to capture studies using machine learning to predict PROMs following a medical event alongside qualitative studies exploring a theoretical PPP.</p><p><strong>Results: </strong>Sixty-eight studies used machine learning to evaluate PROMs; an additional 20 studies focused on a theoretical PPP. For PROMs, orthopedic surgeries (<i>n</i> = 33) and spinal surgeries (<i>n</i> = 12) were the most common medical event. Studies used demographic (<i>n</i> = 30), pre-event PROMs (<i>n</i> = 52), comorbidities (<i>n</i> = 29), social determinants of health (<i>n</i> = 30), and intraoperative variables (<i>n</i> = 124) as predictors. Thirty-four different PROMs were used as the target outcome. Evaluation metrics varied by task, but performance was overall poor to moderate for the best reported scores. In models that used feature importance, pre-event PROMs were the most predictive of post-event PROMs. Fairness assessments were rare (<i>n</i> = 6). These findings reinforce the necessity of the integrating patient values and preferences, beyond demographic factors, to improve the development of personalized PPP models for incapacitated patients.</p><p><strong>Conclusion: </strong>The primary objective of a PPP is to estimate patient-reported quality of life following an intervention. Use of machine learning to predict PROMs for <i>capacitated</i> patients introduces challenges and opportunities for building a personalized PPP for <i>incapacitated</i> patients without advanced directives.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1477447\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1477447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1477447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

背景:有人提出了病人偏好预测算法(PPP),以帮助无行为能力的病人在没有预先指示的情况下做出决定。除了伦理和法律方面的挑战外,建立个性化患者偏好预测器还存在多种实际障碍。在此,我们研究了之前利用机器学习预测病人报告结果指标(PROMs)的工作,这些病人正在接受不同的手术、治疗和生活事件。如果在预测有行为能力患者的 PROMs 方面表现出色,就有可能为开发针对无行为能力患者的模型提供机会:我们采用 PRISMA-ScR 指南对 PubMed、Embase 和 Scopus 进行了范围审查,以获取使用机器学习预测医疗事件后 PROMs 的研究,以及探索理论 PPP 的定性研究:68项研究使用机器学习来评估PROMs;另外20项研究侧重于理论PPP。就 PROMs 而言,骨科手术(33 例)和脊柱手术(12 例)是最常见的医疗事件。研究使用了人口统计学(n = 30)、事件前 PROMs(n = 52)、合并症(n = 29)、健康的社会决定因素(n = 30)和术中变量(n = 124)作为预测因素。34 种不同的 PROMs 被用作目标结果。评估指标因任务而异,但总体而言,报告的最佳分数表现为较差到中等。在使用特征重要性的模型中,活动前的 PROM 对活动后的 PROM 最具预测性。公平性评估很少见(n = 6)。这些研究结果进一步说明,除了人口统计学因素外,还必须整合患者的价值观和偏好,以改进针对无行为能力患者的个性化 PPP 模型的开发:PPP的主要目的是估计干预后患者报告的生活质量。使用机器学习预测无行为能力患者的 PROM,为无行为能力患者建立个性化的 PPP 带来了挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting patient reported outcome measures: a scoping review for the artificial intelligence-guided patient preference predictor.

Background: The algorithmic patient preference predictor (PPP) has been proposed to aid in decision making for incapacitated patients in the absence of advanced directives. Ethical and legal challenges aside, multiple practical barriers exist for building a personalized PPP. Here, we examine previous work using machine learning to predict patient reported outcome measures (PROMs) for capacitated patients undergoing diverse procedures, therapies, and life events. Demonstrating robust performance in predicting PROMs for capacitated patients could suggest opportunities for developing a model tailored to incapacitated ones.

Methods: We performed a scoping review of PubMed, Embase, and Scopus using the PRISMA-ScR guidelines to capture studies using machine learning to predict PROMs following a medical event alongside qualitative studies exploring a theoretical PPP.

Results: Sixty-eight studies used machine learning to evaluate PROMs; an additional 20 studies focused on a theoretical PPP. For PROMs, orthopedic surgeries (n = 33) and spinal surgeries (n = 12) were the most common medical event. Studies used demographic (n = 30), pre-event PROMs (n = 52), comorbidities (n = 29), social determinants of health (n = 30), and intraoperative variables (n = 124) as predictors. Thirty-four different PROMs were used as the target outcome. Evaluation metrics varied by task, but performance was overall poor to moderate for the best reported scores. In models that used feature importance, pre-event PROMs were the most predictive of post-event PROMs. Fairness assessments were rare (n = 6). These findings reinforce the necessity of the integrating patient values and preferences, beyond demographic factors, to improve the development of personalized PPP models for incapacitated patients.

Conclusion: The primary objective of a PPP is to estimate patient-reported quality of life following an intervention. Use of machine learning to predict PROMs for capacitated patients introduces challenges and opportunities for building a personalized PPP for incapacitated patients without advanced directives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信