用小格式免疫细胞因子靶向 PD-1+ T 细胞可增强 IL-12 的抗肿瘤活性。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Noelia Silva-Pilipich, Uxue Beloki, Patricia Apaolaza, Ana Igea, Laura Salaberry, Laura Prats-Mari, Eric Rovira, Marina Ondiviela, Marta Gorraiz, Juan José Lasarte, Lucía Vanrell, Cristian Smerdou
{"title":"用小格式免疫细胞因子靶向 PD-1+ T 细胞可增强 IL-12 的抗肿瘤活性。","authors":"Noelia Silva-Pilipich, Uxue Beloki, Patricia Apaolaza, Ana Igea, Laura Salaberry, Laura Prats-Mari, Eric Rovira, Marina Ondiviela, Marta Gorraiz, Juan José Lasarte, Lucía Vanrell, Cristian Smerdou","doi":"10.1016/j.ymthe.2024.11.027","DOIUrl":null,"url":null,"abstract":"<p><p>Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies targeting mouse and human PD-1 and PD-L1. Both PD-1 and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared to IL-12 alone. Antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 nanobody. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting PD-1<sup>+</sup> T cells with small-format immunocytokines enhances IL-12 antitumor activity.\",\"authors\":\"Noelia Silva-Pilipich, Uxue Beloki, Patricia Apaolaza, Ana Igea, Laura Salaberry, Laura Prats-Mari, Eric Rovira, Marina Ondiviela, Marta Gorraiz, Juan José Lasarte, Lucía Vanrell, Cristian Smerdou\",\"doi\":\"10.1016/j.ymthe.2024.11.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies targeting mouse and human PD-1 and PD-L1. Both PD-1 and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared to IL-12 alone. Antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 nanobody. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.11.027\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.11.027","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

免疫刺激细胞因子和免疫检查点抑制剂有望成为癌症治疗药物;然而,它们的使用往往因疗效降低和毒性显著而受到限制。在这项研究中,我们开发了基于白细胞介素-12(IL-12)的小分子免疫细胞因子(ICK),以及针对小鼠和人类 PD-1 和 PD-L1 的阻断纳米抗体。与单独使用IL-12相比,PD-1和PD-L1靶向的ICK在体外表现相似,都能显著增加IL-12与免疫细胞的系留,提高T细胞的细胞毒活性。ICKs 的抗肿瘤功效是通过使用基于 RNA 的自扩增载体或作为重组蛋白在小鼠体内进行瘤内递送来评估的。尽管PD-L1介导的肿瘤锚定有效且体外结果良好,但只有当通过抗PD-1纳米抗体实现对瘤内T细胞的特异性靶向时,IL-12的抗肿瘤活性才会显著增强。通过电穿孔 DNA/RNA 分层载体递送 PD-1 特异性 ICK 时,也能观察到这种效果。我们的研究结果表明,在IL-12疗法中,靶向肿瘤微环境中适当类型的细胞可能优于肿瘤锚定策略。我们还开发了这些ICK的人类版本,它们在人类免疫细胞中显示出活性,为临床转化提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting PD-1+ T cells with small-format immunocytokines enhances IL-12 antitumor activity.

Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies targeting mouse and human PD-1 and PD-L1. Both PD-1 and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared to IL-12 alone. Antitumor efficacy of ICKs was evaluated by intratumoral delivery using self-amplifying RNA-based vectors or as recombinant proteins in mice. Despite effective PD-L1-mediated tumor anchoring and promising in vitro results, IL-12 antitumor activity was significantly enhanced only when specific targeting to intratumoral T cells was achieved via anti-PD-1 nanobody. This effect was also observed when the PD-1 specific ICK was delivered by electroporation of a DNA/RNA layered vector. Our findings suggest that targeting the appropriate type of cell within the tumor microenvironment could outperform tumor-anchoring strategies in the context of IL-12 therapy. Human versions of these ICKs were also developed, which showed to be active in human immune cells, opening an opportunity for clinical translation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信