Zachary C E Hawley, Ingrid D Pardo, Shaolong Cao, Maria I Zavodszky, Fergal Casey, Kyle Ferber, Yi Luo, Sam Hana, Shukkwan K Chen, Jessica Doherty, Raquel Costa, Patrick Cullen, Yuqing Liu, Thomas M Carlile, Twinkle Chowdhury, Benjamin Doyle, Pete Clarner, Kevin Mangaudis, Edward Guilmette, Shawn Bourque, David Koske, Murali V P Nadella, Patrick Trapa, Michael L Hawes, Denitza Raitcheva, Shih-Ching Lo
{"title":"向非人灵长类动物和小鼠体内输送 AAV-CSF RNAi 表达构建物后的背根神经节毒性。","authors":"Zachary C E Hawley, Ingrid D Pardo, Shaolong Cao, Maria I Zavodszky, Fergal Casey, Kyle Ferber, Yi Luo, Sam Hana, Shukkwan K Chen, Jessica Doherty, Raquel Costa, Patrick Cullen, Yuqing Liu, Thomas M Carlile, Twinkle Chowdhury, Benjamin Doyle, Pete Clarner, Kevin Mangaudis, Edward Guilmette, Shawn Bourque, David Koske, Murali V P Nadella, Patrick Trapa, Michael L Hawes, Denitza Raitcheva, Shih-Ching Lo","doi":"10.1016/j.ymthe.2024.11.029","DOIUrl":null,"url":null,"abstract":"<p><p>Dorsal root ganglion (DRG) toxicity has been consistently reported as a potential safety concern after delivery of adeno-associated viruses (AAVs) containing gene-replacement vectors but has yet to be reported for RNAi-based vectors. Here, we report DRG toxicity after AAV intra-CSF delivery of an RNAi expression construct-artificial microRNA targeting superoxide dismutase 1 (SOD1)-in non-human primates (NHPs) and provide evidence that this can be recapitulated within mice. Histopathology evaluation showed that NHPs and mice develop DRG toxicity after AAV delivery, including DRG neuron degeneration and necrosis and nerve-fiber degeneration that were associated with increases in cerebrospinal fluid (CSF) and serum phosphorylated neurofilament heavy chain (pNF-H). RNA-sequencing analysis of DRGs showed that dysregulated pathways were preserved between NHPs and mice, including increases in innate/adaptive immune responses and decreases in mitochondrial- and neuronal-related genes, following AAV treatment. Finally, endogenous miR-21-5p was upregulated in DRGs of AAV-treated NHPs and mice. Increases in miR-21-5p were also identified within the CSF of NHPs, which significantly correlated with pNF-H, implicating miR-21-5p as a potential biomarker of DRG toxicity in conjunction with other molecular analytes. This work highlights the importance of assessing safety concerns related to DRG toxicity when developing RNAi-based AAV vectors for therapeutic purposes.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dorsal root ganglion toxicity after AAV intra-CSF delivery of a RNAi expression construct into non-human primates and mice.\",\"authors\":\"Zachary C E Hawley, Ingrid D Pardo, Shaolong Cao, Maria I Zavodszky, Fergal Casey, Kyle Ferber, Yi Luo, Sam Hana, Shukkwan K Chen, Jessica Doherty, Raquel Costa, Patrick Cullen, Yuqing Liu, Thomas M Carlile, Twinkle Chowdhury, Benjamin Doyle, Pete Clarner, Kevin Mangaudis, Edward Guilmette, Shawn Bourque, David Koske, Murali V P Nadella, Patrick Trapa, Michael L Hawes, Denitza Raitcheva, Shih-Ching Lo\",\"doi\":\"10.1016/j.ymthe.2024.11.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dorsal root ganglion (DRG) toxicity has been consistently reported as a potential safety concern after delivery of adeno-associated viruses (AAVs) containing gene-replacement vectors but has yet to be reported for RNAi-based vectors. Here, we report DRG toxicity after AAV intra-CSF delivery of an RNAi expression construct-artificial microRNA targeting superoxide dismutase 1 (SOD1)-in non-human primates (NHPs) and provide evidence that this can be recapitulated within mice. Histopathology evaluation showed that NHPs and mice develop DRG toxicity after AAV delivery, including DRG neuron degeneration and necrosis and nerve-fiber degeneration that were associated with increases in cerebrospinal fluid (CSF) and serum phosphorylated neurofilament heavy chain (pNF-H). RNA-sequencing analysis of DRGs showed that dysregulated pathways were preserved between NHPs and mice, including increases in innate/adaptive immune responses and decreases in mitochondrial- and neuronal-related genes, following AAV treatment. Finally, endogenous miR-21-5p was upregulated in DRGs of AAV-treated NHPs and mice. Increases in miR-21-5p were also identified within the CSF of NHPs, which significantly correlated with pNF-H, implicating miR-21-5p as a potential biomarker of DRG toxicity in conjunction with other molecular analytes. This work highlights the importance of assessing safety concerns related to DRG toxicity when developing RNAi-based AAV vectors for therapeutic purposes.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.11.029\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.11.029","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Dorsal root ganglion toxicity after AAV intra-CSF delivery of a RNAi expression construct into non-human primates and mice.
Dorsal root ganglion (DRG) toxicity has been consistently reported as a potential safety concern after delivery of adeno-associated viruses (AAVs) containing gene-replacement vectors but has yet to be reported for RNAi-based vectors. Here, we report DRG toxicity after AAV intra-CSF delivery of an RNAi expression construct-artificial microRNA targeting superoxide dismutase 1 (SOD1)-in non-human primates (NHPs) and provide evidence that this can be recapitulated within mice. Histopathology evaluation showed that NHPs and mice develop DRG toxicity after AAV delivery, including DRG neuron degeneration and necrosis and nerve-fiber degeneration that were associated with increases in cerebrospinal fluid (CSF) and serum phosphorylated neurofilament heavy chain (pNF-H). RNA-sequencing analysis of DRGs showed that dysregulated pathways were preserved between NHPs and mice, including increases in innate/adaptive immune responses and decreases in mitochondrial- and neuronal-related genes, following AAV treatment. Finally, endogenous miR-21-5p was upregulated in DRGs of AAV-treated NHPs and mice. Increases in miR-21-5p were also identified within the CSF of NHPs, which significantly correlated with pNF-H, implicating miR-21-5p as a potential biomarker of DRG toxicity in conjunction with other molecular analytes. This work highlights the importance of assessing safety concerns related to DRG toxicity when developing RNAi-based AAV vectors for therapeutic purposes.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.