Xinyi Chen , Mingyu Cheng , Jinglan Zhang , Yuxia Wang , Chong Chen , Qian Zhang , Yongxin Zhang , Xingguo Wang , Gang Zhang , Bin Ai
{"title":"利用影球光刻技术进行纳米加工的总体优化框架:手性纳米孔阵列案例研究。","authors":"Xinyi Chen , Mingyu Cheng , Jinglan Zhang , Yuxia Wang , Chong Chen , Qian Zhang , Yongxin Zhang , Xingguo Wang , Gang Zhang , Bin Ai","doi":"10.1016/j.jcis.2024.11.086","DOIUrl":null,"url":null,"abstract":"<div><div>Shadow sphere lithography (SSL) offers unparalleled advantages in fabricating complex nanostructures, yet optimizing these structures remains challenging due to vast parameter spaces. This study presents a general optimization framework for SSL-fabricated nanostructures, demonstrated through chiral metamaterials. The approach combines a custom SSL program, a novel mathematical model for eliminating redundant structures, and machine learning (ML) analysis of finite-difference time-domain (FDTD) simulations. Applied to rotated nanohole arrays (RHAs), this framework efficiently navigates a 7200-structure parameter space, identifying optimal configurations with circular dichroism (CD) and <em>g</em>-factor up to 3.23<strong>˚</strong> and 0.28, respectively. Experimental validation of optimized RHAs shows good agreement with predictions, exhibiting twice the chiral response of random configurations. Notably, the framework reduces the dataset by 86%, significantly decreasing computational costs. This optimization framework enables faster, more systematic, and more efficient optimization of structures manufactured using SSL, potentially accelerating discoveries in nanophotonics, plasmonics, and chiral sensing applications.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 202-213"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general optimization framework for nanofabrication using shadow sphere Lithography: A case study on chiral nanohole arrays\",\"authors\":\"Xinyi Chen , Mingyu Cheng , Jinglan Zhang , Yuxia Wang , Chong Chen , Qian Zhang , Yongxin Zhang , Xingguo Wang , Gang Zhang , Bin Ai\",\"doi\":\"10.1016/j.jcis.2024.11.086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shadow sphere lithography (SSL) offers unparalleled advantages in fabricating complex nanostructures, yet optimizing these structures remains challenging due to vast parameter spaces. This study presents a general optimization framework for SSL-fabricated nanostructures, demonstrated through chiral metamaterials. The approach combines a custom SSL program, a novel mathematical model for eliminating redundant structures, and machine learning (ML) analysis of finite-difference time-domain (FDTD) simulations. Applied to rotated nanohole arrays (RHAs), this framework efficiently navigates a 7200-structure parameter space, identifying optimal configurations with circular dichroism (CD) and <em>g</em>-factor up to 3.23<strong>˚</strong> and 0.28, respectively. Experimental validation of optimized RHAs shows good agreement with predictions, exhibiting twice the chiral response of random configurations. Notably, the framework reduces the dataset by 86%, significantly decreasing computational costs. This optimization framework enables faster, more systematic, and more efficient optimization of structures manufactured using SSL, potentially accelerating discoveries in nanophotonics, plasmonics, and chiral sensing applications.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"680 \",\"pages\":\"Pages 202-213\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724026626\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724026626","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A general optimization framework for nanofabrication using shadow sphere Lithography: A case study on chiral nanohole arrays
Shadow sphere lithography (SSL) offers unparalleled advantages in fabricating complex nanostructures, yet optimizing these structures remains challenging due to vast parameter spaces. This study presents a general optimization framework for SSL-fabricated nanostructures, demonstrated through chiral metamaterials. The approach combines a custom SSL program, a novel mathematical model for eliminating redundant structures, and machine learning (ML) analysis of finite-difference time-domain (FDTD) simulations. Applied to rotated nanohole arrays (RHAs), this framework efficiently navigates a 7200-structure parameter space, identifying optimal configurations with circular dichroism (CD) and g-factor up to 3.23˚ and 0.28, respectively. Experimental validation of optimized RHAs shows good agreement with predictions, exhibiting twice the chiral response of random configurations. Notably, the framework reduces the dataset by 86%, significantly decreasing computational costs. This optimization framework enables faster, more systematic, and more efficient optimization of structures manufactured using SSL, potentially accelerating discoveries in nanophotonics, plasmonics, and chiral sensing applications.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies