阿尔茨海默病中的 DUBs:机制和治疗意义。

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Biying Qin, Xiaodong Chen, Feng Wang, Yanfeng Wang
{"title":"阿尔茨海默病中的 DUBs:机制和治疗意义。","authors":"Biying Qin, Xiaodong Chen, Feng Wang, Yanfeng Wang","doi":"10.1038/s41420-024-02237-3","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the accumulation of amyloid β protein (Aβ) and the hyper-phosphorylation of the microtubule-associated protein Tau. The ubiquitin-proteasome system (UPS) plays a pivotal role in determining the fate of proteins, and its dysregulation can contribute to the buildup of Aβ and Tau. Deubiquitinating enzymes (DUBs), working in conjunction with activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3), actively maintain the delicate balance of protein homeostasis. DUBs specifically remove ubiquitin tags from proteins marked for degradation, thereby averting their proteasomal breakdown. Several DUBs have demonstrated their capacity to regulate the levels of Aβ and Tau by modulating their degree of ubiquitination, underscoring their potential as therapeutic targets for AD. In this context, we present a comprehensive review of AD-associated DUBs and elucidate their physiological roles. Moreover, we delve into the current advancements in developing inhibitors targeting these DUBs, including the determination of cocrystal structures with their respective targets. Additionally, we assess the therapeutic efficacy of these inhibitors in AD, aiming to establish a theoretical foundation for future AD treatments.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"475"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DUBs in Alzheimer's disease: mechanisms and therapeutic implications.\",\"authors\":\"Biying Qin, Xiaodong Chen, Feng Wang, Yanfeng Wang\",\"doi\":\"10.1038/s41420-024-02237-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the accumulation of amyloid β protein (Aβ) and the hyper-phosphorylation of the microtubule-associated protein Tau. The ubiquitin-proteasome system (UPS) plays a pivotal role in determining the fate of proteins, and its dysregulation can contribute to the buildup of Aβ and Tau. Deubiquitinating enzymes (DUBs), working in conjunction with activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3), actively maintain the delicate balance of protein homeostasis. DUBs specifically remove ubiquitin tags from proteins marked for degradation, thereby averting their proteasomal breakdown. Several DUBs have demonstrated their capacity to regulate the levels of Aβ and Tau by modulating their degree of ubiquitination, underscoring their potential as therapeutic targets for AD. In this context, we present a comprehensive review of AD-associated DUBs and elucidate their physiological roles. Moreover, we delve into the current advancements in developing inhibitors targeting these DUBs, including the determination of cocrystal structures with their respective targets. Additionally, we assess the therapeutic efficacy of these inhibitors in AD, aiming to establish a theoretical foundation for future AD treatments.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"10 1\",\"pages\":\"475\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02237-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02237-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种常见的神经退行性疾病,其特征是淀粉样β蛋白(Aβ)的积累和微管相关蛋白Tau的过度磷酸化。泛素-蛋白酶体系统(UPS)在决定蛋白质的命运方面起着关键作用,它的失调会导致 Aβ 和 Tau 的积累。去泛素化酶(DUB)与激活酶(E1)、泛素结合酶(E2)和泛素连接酶(E3)共同作用,积极维持蛋白质平衡的微妙平衡。DUBs 能特异性地从标记为降解的蛋白质上去除泛素标签,从而避免其被蛋白酶体分解。一些 DUBs 已证明它们有能力通过调节 Aβ 和 Tau 的泛素化程度来调节它们的水平,这突显了它们作为 AD 治疗靶点的潜力。在此背景下,我们全面回顾了与AD相关的DUBs,并阐明了它们的生理作用。此外,我们还深入探讨了目前针对这些 DUBs 开发抑制剂的进展,包括确定其与各自靶标的共晶体结构。此外,我们还评估了这些抑制剂对AD的疗效,旨在为未来的AD治疗奠定理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DUBs in Alzheimer's disease: mechanisms and therapeutic implications.

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the accumulation of amyloid β protein (Aβ) and the hyper-phosphorylation of the microtubule-associated protein Tau. The ubiquitin-proteasome system (UPS) plays a pivotal role in determining the fate of proteins, and its dysregulation can contribute to the buildup of Aβ and Tau. Deubiquitinating enzymes (DUBs), working in conjunction with activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3), actively maintain the delicate balance of protein homeostasis. DUBs specifically remove ubiquitin tags from proteins marked for degradation, thereby averting their proteasomal breakdown. Several DUBs have demonstrated their capacity to regulate the levels of Aβ and Tau by modulating their degree of ubiquitination, underscoring their potential as therapeutic targets for AD. In this context, we present a comprehensive review of AD-associated DUBs and elucidate their physiological roles. Moreover, we delve into the current advancements in developing inhibitors targeting these DUBs, including the determination of cocrystal structures with their respective targets. Additionally, we assess the therapeutic efficacy of these inhibitors in AD, aiming to establish a theoretical foundation for future AD treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信