Hao-Chih Hung, Jia-Han Lin, Yuan-Chi Teng, Cheng-Heng Kao, Pei-Yu Wang, Bing-Wen Soong, Ting-Fen Tsai
下载PDF
{"title":"小鼠的显性阴性 Kcnd3 F227del 突变会损害 ER 和高尔基体的功能,从而导致脊髓小脑共济失调 22 型(SCA22)。","authors":"Hao-Chih Hung, Jia-Han Lin, Yuan-Chi Teng, Cheng-Heng Kao, Pei-Yu Wang, Bing-Wen Soong, Ting-Fen Tsai","doi":"10.1002/path.6368","DOIUrl":null,"url":null,"abstract":"<p>Spinocerebellar ataxia type 22 (SCA22) caused by <i>KCND3</i> mutations is an autosomal dominant disorder. We established a mouse model carrying the <i>Kcnd3</i> F227del mutation to study the molecular pathogenesis. Four findings were pinpointed. First, the heterozygous mice exhibited an early onset of defects in motor coordination and balance which mirror those of SCA22 patients. The degeneration and a minor loss of Purkinje cells, together with the concurrent presence of neuroinflammation, as well as the previous finding on electrophysiological changes, may all contribute to the development of the SCA22 ataxia phenotype in mice carrying the <i>Kcnd3</i> F227del mutant protein. Second, the mutant protein is retained by the endoplasmic reticulum and Golgi, leading to activation of the unfolded protein response and a severe trafficking defect that affects its membrane destination. Intriguingly, profound damage of the Golgi is the earliest manifestation. Third, analysis of the transcriptome revealed that the <i>Kcnd3</i> F227del mutation down-regulates a panel of genes involved in the functioning of synapses and neurogenesis which are tightly linked to the functioning of Purkinje cells. Finally, no ataxia phenotypes were detectable in knockout mice carrying a loss-of-function <i>Kcnd3</i> mutation. Thus, <i>Kcnd3</i> F227del is a dominant-negative mutation. This mouse model may serve as a preclinical model for exploring therapeutic strategies to treat patients. © 2024 The Author(s). <i>The Journal of Pathology</i> published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.</p>","PeriodicalId":232,"journal":{"name":"The Journal of Pathology","volume":"265 1","pages":"57-68"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638663/pdf/","citationCount":"0","resultStr":"{\"title\":\"A dominant negative Kcnd3 F227del mutation in mice causes spinocerebellar ataxia type 22 (SCA22) by impairing ER and Golgi functioning\",\"authors\":\"Hao-Chih Hung, Jia-Han Lin, Yuan-Chi Teng, Cheng-Heng Kao, Pei-Yu Wang, Bing-Wen Soong, Ting-Fen Tsai\",\"doi\":\"10.1002/path.6368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spinocerebellar ataxia type 22 (SCA22) caused by <i>KCND3</i> mutations is an autosomal dominant disorder. We established a mouse model carrying the <i>Kcnd3</i> F227del mutation to study the molecular pathogenesis. Four findings were pinpointed. First, the heterozygous mice exhibited an early onset of defects in motor coordination and balance which mirror those of SCA22 patients. The degeneration and a minor loss of Purkinje cells, together with the concurrent presence of neuroinflammation, as well as the previous finding on electrophysiological changes, may all contribute to the development of the SCA22 ataxia phenotype in mice carrying the <i>Kcnd3</i> F227del mutant protein. Second, the mutant protein is retained by the endoplasmic reticulum and Golgi, leading to activation of the unfolded protein response and a severe trafficking defect that affects its membrane destination. Intriguingly, profound damage of the Golgi is the earliest manifestation. Third, analysis of the transcriptome revealed that the <i>Kcnd3</i> F227del mutation down-regulates a panel of genes involved in the functioning of synapses and neurogenesis which are tightly linked to the functioning of Purkinje cells. Finally, no ataxia phenotypes were detectable in knockout mice carrying a loss-of-function <i>Kcnd3</i> mutation. Thus, <i>Kcnd3</i> F227del is a dominant-negative mutation. This mouse model may serve as a preclinical model for exploring therapeutic strategies to treat patients. © 2024 The Author(s). <i>The Journal of Pathology</i> published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.</p>\",\"PeriodicalId\":232,\"journal\":{\"name\":\"The Journal of Pathology\",\"volume\":\"265 1\",\"pages\":\"57-68\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638663/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/path.6368\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/path.6368","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用