Maryam Hussein Abdulameer, Ali B. M. Ali, Ahmed K. Nemah, Prakash Kanjariya, Asha Rajiv, Mohit Agarwal, Parjinder Kaur, Abdulrahman A. Almehizia
{"title":"新型 Pὃschl-Teller 电位模型的气态分子摩尔熵预测","authors":"Maryam Hussein Abdulameer, Ali B. M. Ali, Ahmed K. Nemah, Prakash Kanjariya, Asha Rajiv, Mohit Agarwal, Parjinder Kaur, Abdulrahman A. Almehizia","doi":"10.1002/qua.27505","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Pὃschl–Teller potential is a molecular potential energy function that has only been reported for bound state. This Pὃschl–Teller potential is a good representation of many molecules and has not been examined for any thermodynamic property irrespective of its fitness for molecular study. In this study, the molar entropy of four molecules (Pbr, BBr, CsCl, and CsO molecules) is calculated via the molar partition function. The predicted results are compared with the experimental data recorded in the National Institute of Standards and Technology (NIST) database. It is noted that the predicted values for the studied molecules perfectly agree with the experimental results with the following average absolute percentage deviation, PBr is 0.0158%, BBr is 0.0053%, CsCl is 0.0020%, and CsO is 0.0052%. The present model reproduces better results for CsCl and CsO molecules compared to the shifted Tietz–Wei potential and improved Tietz-oscillator previously reported whose average absolute percentage deviation are 0.361% and 0.284% for CsCl and 0.272% and 0.228% for CsO, respectively.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 22","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Molar Entropy of Gaseous Molecules for a New Pὃschl-Teller Potential Model\",\"authors\":\"Maryam Hussein Abdulameer, Ali B. M. Ali, Ahmed K. Nemah, Prakash Kanjariya, Asha Rajiv, Mohit Agarwal, Parjinder Kaur, Abdulrahman A. Almehizia\",\"doi\":\"10.1002/qua.27505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The Pὃschl–Teller potential is a molecular potential energy function that has only been reported for bound state. This Pὃschl–Teller potential is a good representation of many molecules and has not been examined for any thermodynamic property irrespective of its fitness for molecular study. In this study, the molar entropy of four molecules (Pbr, BBr, CsCl, and CsO molecules) is calculated via the molar partition function. The predicted results are compared with the experimental data recorded in the National Institute of Standards and Technology (NIST) database. It is noted that the predicted values for the studied molecules perfectly agree with the experimental results with the following average absolute percentage deviation, PBr is 0.0158%, BBr is 0.0053%, CsCl is 0.0020%, and CsO is 0.0052%. The present model reproduces better results for CsCl and CsO molecules compared to the shifted Tietz–Wei potential and improved Tietz-oscillator previously reported whose average absolute percentage deviation are 0.361% and 0.284% for CsCl and 0.272% and 0.228% for CsO, respectively.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"124 22\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27505\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27505","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Prediction of Molar Entropy of Gaseous Molecules for a New Pὃschl-Teller Potential Model
The Pὃschl–Teller potential is a molecular potential energy function that has only been reported for bound state. This Pὃschl–Teller potential is a good representation of many molecules and has not been examined for any thermodynamic property irrespective of its fitness for molecular study. In this study, the molar entropy of four molecules (Pbr, BBr, CsCl, and CsO molecules) is calculated via the molar partition function. The predicted results are compared with the experimental data recorded in the National Institute of Standards and Technology (NIST) database. It is noted that the predicted values for the studied molecules perfectly agree with the experimental results with the following average absolute percentage deviation, PBr is 0.0158%, BBr is 0.0053%, CsCl is 0.0020%, and CsO is 0.0052%. The present model reproduces better results for CsCl and CsO molecules compared to the shifted Tietz–Wei potential and improved Tietz-oscillator previously reported whose average absolute percentage deviation are 0.361% and 0.284% for CsCl and 0.272% and 0.228% for CsO, respectively.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.