具有聚集诱导发射的热激活延迟荧光发射器的有效设计策略,使天蓝色 OLED 的 EQE 接近 30

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hui Dai, Yaohui Liang, Xiang Long, Tianyi Tang, Haozhi Xie, Zhiwei Ma, Gaoyu Li, Zhiyong Yang, Juan Zhao, Zhenguo Chi
{"title":"具有聚集诱导发射的热激活延迟荧光发射器的有效设计策略,使天蓝色 OLED 的 EQE 接近 30","authors":"Hui Dai, Yaohui Liang, Xiang Long, Tianyi Tang, Haozhi Xie, Zhiwei Ma, Gaoyu Li, Zhiyong Yang, Juan Zhao, Zhenguo Chi","doi":"10.1039/d4sc06613h","DOIUrl":null,"url":null,"abstract":"Pure organic thermally activated delayed fluorescence (TADF) materials hold great promise for efficient organic light-emitting diodes (OLEDs), yet developing high-performing blue TADF materials that integrate short delayed lifetime with aggregation induced emission (AIE) property remains a significant challenge. In this study, we developed three highly-efficient blue TADF emitters (32clCBP, 32clCXT and 32PclCXT) featuring AIE characteristics by integrating rigid π-extended donors with different acceptors. Notably, in the doped 32PclCXT film achieved an exceptionally high photoluminescence quantum efficiency of up to 99% and a short delayed lifetime of 1.4 µs. Furthermore, the fabricated OLEDs based on 32PclCXT exhibited an impressive external quantum efficiency of 29.9% in the sky-blue region, along with low roll-off at high luminance. Therefore, this work establishes a new strategy for developing high-efficiency blue TADF materials and devices.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"14 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Design Strategy for Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced emission to Enable Sky-blue OLEDs Achieving EQE Nearly 30%\",\"authors\":\"Hui Dai, Yaohui Liang, Xiang Long, Tianyi Tang, Haozhi Xie, Zhiwei Ma, Gaoyu Li, Zhiyong Yang, Juan Zhao, Zhenguo Chi\",\"doi\":\"10.1039/d4sc06613h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pure organic thermally activated delayed fluorescence (TADF) materials hold great promise for efficient organic light-emitting diodes (OLEDs), yet developing high-performing blue TADF materials that integrate short delayed lifetime with aggregation induced emission (AIE) property remains a significant challenge. In this study, we developed three highly-efficient blue TADF emitters (32clCBP, 32clCXT and 32PclCXT) featuring AIE characteristics by integrating rigid π-extended donors with different acceptors. Notably, in the doped 32PclCXT film achieved an exceptionally high photoluminescence quantum efficiency of up to 99% and a short delayed lifetime of 1.4 µs. Furthermore, the fabricated OLEDs based on 32PclCXT exhibited an impressive external quantum efficiency of 29.9% in the sky-blue region, along with low roll-off at high luminance. Therefore, this work establishes a new strategy for developing high-efficiency blue TADF materials and devices.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4sc06613h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06613h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纯有机热激活延迟荧光(TADF)材料在高效有机发光二极管(OLED)中大有可为,但开发集短延迟寿命和聚集诱导发射(AIE)特性于一体的高性能蓝色 TADF 材料仍是一项重大挑战。在这项研究中,我们开发了三种高效蓝色 TADF 发射器(32clCBP、32clCXT 和 32PclCXT),它们通过将刚性 π 延伸的供体与不同的受体整合在一起而具有 AIE 特性。值得注意的是,掺杂 32PclCXT 薄膜的光致发光量子效率高达 99%,延迟寿命短至 1.4 µs。此外,基于 32PclCXT 制成的有机发光二极管在天蓝色区域的外部量子效率达到了惊人的 29.9%,并且在高亮度下的衰减较低。因此,这项工作为开发高效蓝色 TADF 材料和器件确立了新的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Design Strategy for Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced emission to Enable Sky-blue OLEDs Achieving EQE Nearly 30%
Pure organic thermally activated delayed fluorescence (TADF) materials hold great promise for efficient organic light-emitting diodes (OLEDs), yet developing high-performing blue TADF materials that integrate short delayed lifetime with aggregation induced emission (AIE) property remains a significant challenge. In this study, we developed three highly-efficient blue TADF emitters (32clCBP, 32clCXT and 32PclCXT) featuring AIE characteristics by integrating rigid π-extended donors with different acceptors. Notably, in the doped 32PclCXT film achieved an exceptionally high photoluminescence quantum efficiency of up to 99% and a short delayed lifetime of 1.4 µs. Furthermore, the fabricated OLEDs based on 32PclCXT exhibited an impressive external quantum efficiency of 29.9% in the sky-blue region, along with low roll-off at high luminance. Therefore, this work establishes a new strategy for developing high-efficiency blue TADF materials and devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信