用于织物建模的切比雪夫参数化

IF 7.8 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Annika Öhri, Aviv Segall, Jing Ren, Olga Sorkine-Hornung
{"title":"用于织物建模的切比雪夫参数化","authors":"Annika Öhri, Aviv Segall, Jing Ren, Olga Sorkine-Hornung","doi":"10.1145/3687928","DOIUrl":null,"url":null,"abstract":"Distortion-minimizing surface parameterization is an essential step for computing 2D pieces necessary to fabricate a target 3D shape from flat material. Garment design and textile fabrication are a prominent application example. Common distortion measures quantify length, angle or area preservation in an isotropic manner, so that when applied to woven textile fabrication, they implicitly assume fabric behaves like paper, which is inextensible in all directions and does not permit shearing. However, woven fabric differs significantly from paper: it exhibits anisotropy along the yarn directions and allows for some degree of shearing. We propose a novel distortion energy based on Chebyshev nets that anisotropically penalizes shearing and stretching. Our energy formulation can be used as an optimization objective for surface parameterization and is simple to minimize via a local-global algorithm. We demonstrate its advantages in modeling nets or woven fabric behavior over the commonly used isotropic distortion energies.","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":"38 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chebyshev Parameterization for Woven Fabric Modeling\",\"authors\":\"Annika Öhri, Aviv Segall, Jing Ren, Olga Sorkine-Hornung\",\"doi\":\"10.1145/3687928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distortion-minimizing surface parameterization is an essential step for computing 2D pieces necessary to fabricate a target 3D shape from flat material. Garment design and textile fabrication are a prominent application example. Common distortion measures quantify length, angle or area preservation in an isotropic manner, so that when applied to woven textile fabrication, they implicitly assume fabric behaves like paper, which is inextensible in all directions and does not permit shearing. However, woven fabric differs significantly from paper: it exhibits anisotropy along the yarn directions and allows for some degree of shearing. We propose a novel distortion energy based on Chebyshev nets that anisotropically penalizes shearing and stretching. Our energy formulation can be used as an optimization objective for surface parameterization and is simple to minimize via a local-global algorithm. We demonstrate its advantages in modeling nets or woven fabric behavior over the commonly used isotropic distortion energies.\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3687928\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3687928","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

畸变最小化表面参数化是计算二维碎片的重要步骤,而计算二维碎片则是利用平面材料制造目标三维形状的必要条件。服装设计和纺织品制造就是一个突出的应用实例。常见的变形测量方法以各向同性的方式量化长度、角度或面积的保持,因此在应用于编织纺织品制造时,它们隐含地假定织物的行为与纸张类似,在所有方向上都无法拉伸,也不允许剪切。然而,机织物与纸张有很大不同:它沿纱线方向呈现各向异性,允许一定程度的剪切。我们提出了一种基于切比雪夫网的新型变形能量,它可以各向异性地惩罚剪切和拉伸。我们的能量公式可用作表面参数化的优化目标,并可通过局部-全局算法实现最小化。与常用的各向同性变形能量相比,我们证明了它在模拟网或编织物行为方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chebyshev Parameterization for Woven Fabric Modeling
Distortion-minimizing surface parameterization is an essential step for computing 2D pieces necessary to fabricate a target 3D shape from flat material. Garment design and textile fabrication are a prominent application example. Common distortion measures quantify length, angle or area preservation in an isotropic manner, so that when applied to woven textile fabrication, they implicitly assume fabric behaves like paper, which is inextensible in all directions and does not permit shearing. However, woven fabric differs significantly from paper: it exhibits anisotropy along the yarn directions and allows for some degree of shearing. We propose a novel distortion energy based on Chebyshev nets that anisotropically penalizes shearing and stretching. Our energy formulation can be used as an optimization objective for surface parameterization and is simple to minimize via a local-global algorithm. We demonstrate its advantages in modeling nets or woven fabric behavior over the commonly used isotropic distortion energies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Graphics
ACM Transactions on Graphics 工程技术-计算机:软件工程
CiteScore
14.30
自引率
25.80%
发文量
193
审稿时长
12 months
期刊介绍: ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信