黑色在棉花引力中反弹

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Ednaldo L. B. Junior, José Tarciso S. S. Junior, Francisco S. N. Lobo, Manuel E. Rodrigues, Diego Rubiera-Garcia, Luís F. Dias da Silva, Henrique A. Vieira
{"title":"黑色在棉花引力中反弹","authors":"Ednaldo L. B. Junior,&nbsp;José Tarciso S. S. Junior,&nbsp;Francisco S. N. Lobo,&nbsp;Manuel E. Rodrigues,&nbsp;Diego Rubiera-Garcia,&nbsp;Luís F. Dias da Silva,&nbsp;Henrique A. Vieira","doi":"10.1140/epjc/s10052-024-13568-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, J. Harada proposed a theory relating gravity to the Cotton tensor, dubbed as “Cotton gravity” (CG). This is an extension of General Relativity such that every solution of the latter turns out to be a solution of the former (but the converse is not true) and, furthermore, it is possible to derive the cosmological constant as an integration constant within it. In this work we investigate CG by coupling it to both non-linear electrodynamics (NLED) and scalar fields. We study static and spherically symmetric solutions implementing a bouncing behaviour in the radial function so as to avoid the development of singularities, inspired by the Simpson–Visser black bounce and the Bardeen model, both interpreted as magnetic monopoles. We identify the NLED Lagrangian density and the scalar field potential generating such solutions, and investigate the corresponding gravitational configurations in terms of horizons, behaviour of the metric functions, and regularity of the Kretchsman curvature scalar. Our analysis extends the class of non-singular geometries found in the literature and paves the ground for further analysis of black holes in CG.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13568-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Black bounces in Cotton gravity\",\"authors\":\"Ednaldo L. B. Junior,&nbsp;José Tarciso S. S. Junior,&nbsp;Francisco S. N. Lobo,&nbsp;Manuel E. Rodrigues,&nbsp;Diego Rubiera-Garcia,&nbsp;Luís F. Dias da Silva,&nbsp;Henrique A. Vieira\",\"doi\":\"10.1140/epjc/s10052-024-13568-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, J. Harada proposed a theory relating gravity to the Cotton tensor, dubbed as “Cotton gravity” (CG). This is an extension of General Relativity such that every solution of the latter turns out to be a solution of the former (but the converse is not true) and, furthermore, it is possible to derive the cosmological constant as an integration constant within it. In this work we investigate CG by coupling it to both non-linear electrodynamics (NLED) and scalar fields. We study static and spherically symmetric solutions implementing a bouncing behaviour in the radial function so as to avoid the development of singularities, inspired by the Simpson–Visser black bounce and the Bardeen model, both interpreted as magnetic monopoles. We identify the NLED Lagrangian density and the scalar field potential generating such solutions, and investigate the corresponding gravitational configurations in terms of horizons, behaviour of the metric functions, and regularity of the Kretchsman curvature scalar. Our analysis extends the class of non-singular geometries found in the literature and paves the ground for further analysis of black holes in CG.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13568-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13568-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13568-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

最近,J. Harada 提出了一种与棉花张量有关的引力理论,被称为 "棉花引力"(CG)。这是对广义相对论的扩展,使得后者的每一个解都是前者的一个解(但反之则不然),而且,有可能在其中推导出宇宙学常数作为一个积分常数。在这项研究中,我们将宇宙学常数与非线性电动力学(NLED)和标量场耦合起来进行研究。我们研究了静态和球面对称的解决方案,在径向函数中实施了弹跳行为,以避免奇点的出现,其灵感来自辛普森-维瑟黑弹跳和巴丁模型,两者都被解释为磁单极子。我们确定了产生这种解的 NLED 拉格朗日密度和标量场势,并从地平线、度量函数的行为和 Kretchsman 曲率标量的规则性等方面研究了相应的引力构型。我们的分析扩展了文献中发现的非星形几何图形类别,为进一步分析 CG 中的黑洞奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black bounces in Cotton gravity

Recently, J. Harada proposed a theory relating gravity to the Cotton tensor, dubbed as “Cotton gravity” (CG). This is an extension of General Relativity such that every solution of the latter turns out to be a solution of the former (but the converse is not true) and, furthermore, it is possible to derive the cosmological constant as an integration constant within it. In this work we investigate CG by coupling it to both non-linear electrodynamics (NLED) and scalar fields. We study static and spherically symmetric solutions implementing a bouncing behaviour in the radial function so as to avoid the development of singularities, inspired by the Simpson–Visser black bounce and the Bardeen model, both interpreted as magnetic monopoles. We identify the NLED Lagrangian density and the scalar field potential generating such solutions, and investigate the corresponding gravitational configurations in terms of horizons, behaviour of the metric functions, and regularity of the Kretchsman curvature scalar. Our analysis extends the class of non-singular geometries found in the literature and paves the ground for further analysis of black holes in CG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信