A. S. Arkhipin, A. Pisch, S. V. Kuzovchikov, A. V. Khvan, N. N. Smirnova, A. V. Markin, I. A. Uspenskaya
{"title":"(CaO)0.5(Al2O3)0.1(SiO2)0.4 玻璃的热力学性质","authors":"A. S. Arkhipin, A. Pisch, S. V. Kuzovchikov, A. V. Khvan, N. N. Smirnova, A. V. Markin, I. A. Uspenskaya","doi":"10.1134/S0036024424701899","DOIUrl":null,"url":null,"abstract":"<p>Thermodynamic properties of (CaO)<sub>0.501</sub>(Al<sub>2</sub>O<sub>3</sub>)<sub>0.098</sub>(SiO<sub>2</sub>)<sub>0.401</sub> (Ca40.10) glass are studied using two techniques: low-temperature vacuum adiabatic calorimetry and high-temperature drop solution calorimetry. The enthalpy of formation from oxides (−17.6 ± 2.6 kJ/mol) is determined for the first time. Heat capacity is shown to grow monotonically with temperature in the interval of 8 to 357 K. No phase transitions are revealed in this region of temperatures. Results from measuring heat capacity are approximated using the semi-empirical Planck–Einstein model. The possibility of using incremental scheme to estimate the heat capacity of ternary glasses formed by calcium, aluminium, and silicon oxides is confirmed.</p>","PeriodicalId":767,"journal":{"name":"Russian Journal of Physical Chemistry A","volume":"98 12","pages":"2681 - 2690"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Properties of (CaO)0.5(Al2O3)0.1(SiO2)0.4 Glass\",\"authors\":\"A. S. Arkhipin, A. Pisch, S. V. Kuzovchikov, A. V. Khvan, N. N. Smirnova, A. V. Markin, I. A. Uspenskaya\",\"doi\":\"10.1134/S0036024424701899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermodynamic properties of (CaO)<sub>0.501</sub>(Al<sub>2</sub>O<sub>3</sub>)<sub>0.098</sub>(SiO<sub>2</sub>)<sub>0.401</sub> (Ca40.10) glass are studied using two techniques: low-temperature vacuum adiabatic calorimetry and high-temperature drop solution calorimetry. The enthalpy of formation from oxides (−17.6 ± 2.6 kJ/mol) is determined for the first time. Heat capacity is shown to grow monotonically with temperature in the interval of 8 to 357 K. No phase transitions are revealed in this region of temperatures. Results from measuring heat capacity are approximated using the semi-empirical Planck–Einstein model. The possibility of using incremental scheme to estimate the heat capacity of ternary glasses formed by calcium, aluminium, and silicon oxides is confirmed.</p>\",\"PeriodicalId\":767,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry A\",\"volume\":\"98 12\",\"pages\":\"2681 - 2690\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry A\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036024424701899\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry A","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036024424701899","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Thermodynamic Properties of (CaO)0.5(Al2O3)0.1(SiO2)0.4 Glass
Thermodynamic properties of (CaO)0.501(Al2O3)0.098(SiO2)0.401 (Ca40.10) glass are studied using two techniques: low-temperature vacuum adiabatic calorimetry and high-temperature drop solution calorimetry. The enthalpy of formation from oxides (−17.6 ± 2.6 kJ/mol) is determined for the first time. Heat capacity is shown to grow monotonically with temperature in the interval of 8 to 357 K. No phase transitions are revealed in this region of temperatures. Results from measuring heat capacity are approximated using the semi-empirical Planck–Einstein model. The possibility of using incremental scheme to estimate the heat capacity of ternary glasses formed by calcium, aluminium, and silicon oxides is confirmed.
期刊介绍:
Russian Journal of Physical Chemistry A. Focus on Chemistry (Zhurnal Fizicheskoi Khimii), founded in 1930, offers a comprehensive review of theoretical and experimental research from the Russian Academy of Sciences, leading research and academic centers from Russia and from all over the world.
Articles are devoted to chemical thermodynamics and thermochemistry, biophysical chemistry, photochemistry and magnetochemistry, materials structure, quantum chemistry, physical chemistry of nanomaterials and solutions, surface phenomena and adsorption, and methods and techniques of physicochemical studies.