非反射 Orlicz-Sobolev 空间中的一类椭圆系统

Q2 Mathematics
Hamza El-Houari
{"title":"非反射 Orlicz-Sobolev 空间中的一类椭圆系统","authors":"Hamza El-Houari","doi":"10.1007/s11565-024-00546-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to show that there exists a weak solution to the following quasilinear system driven by the <i>M</i>-Laplacian </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} (-\\Delta _{m_1})u=F_u(x,u,v)&amp; in\\quad \\Omega , \\\\ (-\\Delta _{m_2})v=F_v(x,u,v)&amp; in\\quad \\Omega ,\\\\ u=v=0&amp; in\\quad \\partial \\Omega , \\end{array}\\right. } \\end{aligned}$$</span></div><div>\n (0.1)\n </div></div><p>where <span>\\(\\Omega \\)</span> is a bounded open subset in <span>\\({\\mathbb {R}}^N\\)</span> and <span>\\((-\\Delta _{m})\\)</span> is the <i>M</i>-Laplacian operator. Here we consider the non-reflexive case taking into account the Orlicz and Orlicz-Sobolev Space. The non-reflexive case occurs when the <i>N</i>-function <span>\\({\\overline{M}}\\)</span> does not verify the <span>\\(\\Delta _2\\)</span>-condition. We consider an approximated quasilinear elliptic problem driven by the <span>\\(M_\\epsilon \\)</span>-Laplacian and using the Mountain Pass Theorem to obtain the existence of a nontrivial and nonnegative solution for the above system in reflexive case. By tending <span>\\(\\epsilon \\rightarrow 0\\)</span> we get the solution in the non-reflexive case.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of elliptic system in non reflexive Orlicz-Sobolev spaces\",\"authors\":\"Hamza El-Houari\",\"doi\":\"10.1007/s11565-024-00546-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper aims to show that there exists a weak solution to the following quasilinear system driven by the <i>M</i>-Laplacian </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} (-\\\\Delta _{m_1})u=F_u(x,u,v)&amp; in\\\\quad \\\\Omega , \\\\\\\\ (-\\\\Delta _{m_2})v=F_v(x,u,v)&amp; in\\\\quad \\\\Omega ,\\\\\\\\ u=v=0&amp; in\\\\quad \\\\partial \\\\Omega , \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div><div>\\n (0.1)\\n </div></div><p>where <span>\\\\(\\\\Omega \\\\)</span> is a bounded open subset in <span>\\\\({\\\\mathbb {R}}^N\\\\)</span> and <span>\\\\((-\\\\Delta _{m})\\\\)</span> is the <i>M</i>-Laplacian operator. Here we consider the non-reflexive case taking into account the Orlicz and Orlicz-Sobolev Space. The non-reflexive case occurs when the <i>N</i>-function <span>\\\\({\\\\overline{M}}\\\\)</span> does not verify the <span>\\\\(\\\\Delta _2\\\\)</span>-condition. We consider an approximated quasilinear elliptic problem driven by the <span>\\\\(M_\\\\epsilon \\\\)</span>-Laplacian and using the Mountain Pass Theorem to obtain the existence of a nontrivial and nonnegative solution for the above system in reflexive case. By tending <span>\\\\(\\\\epsilon \\\\rightarrow 0\\\\)</span> we get the solution in the non-reflexive case.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00546-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00546-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在证明以下由 M 拉普拉斯驱动的准线性系统存在一个弱解 $$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta _{m_1})u=F_u(x,u,v)&; (-\Delta _{m_2})v=F_v(x,u,v)& in\quad \Omega ,\ u=v=0& in\quad \partial \Omega , \end{array}\right.}\(0.1) 其中 \(\Omega \) 是 \({\mathbb {R}}^N\) 中的有界开放子集,\((-\Delta _{m})\) 是 M-Laplacian 算子。这里我们考虑到奥利奇和奥利奇-索博廖夫空间的非反射情况。当 N 函数 \({\overline{M}}\) 不能证实 \(\Delta _2\)-条件时,就会出现非反射情况。我们考虑了由\(M_\epsilon \)-拉普拉奇驱动的近似准线性椭圆问题,并利用山口定理得到了上述系统在反向情况下存在一个非小且非负的解。通过趋近 \(\epsilon \rightarrow 0\) 我们可以得到非反射情况下的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of elliptic system in non reflexive Orlicz-Sobolev spaces

This paper aims to show that there exists a weak solution to the following quasilinear system driven by the M-Laplacian

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta _{m_1})u=F_u(x,u,v)& in\quad \Omega , \\ (-\Delta _{m_2})v=F_v(x,u,v)& in\quad \Omega ,\\ u=v=0& in\quad \partial \Omega , \end{array}\right. } \end{aligned}$$
(0.1)

where \(\Omega \) is a bounded open subset in \({\mathbb {R}}^N\) and \((-\Delta _{m})\) is the M-Laplacian operator. Here we consider the non-reflexive case taking into account the Orlicz and Orlicz-Sobolev Space. The non-reflexive case occurs when the N-function \({\overline{M}}\) does not verify the \(\Delta _2\)-condition. We consider an approximated quasilinear elliptic problem driven by the \(M_\epsilon \)-Laplacian and using the Mountain Pass Theorem to obtain the existence of a nontrivial and nonnegative solution for the above system in reflexive case. By tending \(\epsilon \rightarrow 0\) we get the solution in the non-reflexive case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信