Ruikun Luo;Qiang He;Feifei Chen;Song Wu;Hai Jin;Yun Yang
{"title":"瑞波:在边缘实现去中心化重复数据删除","authors":"Ruikun Luo;Qiang He;Feifei Chen;Song Wu;Hai Jin;Yun Yang","doi":"10.1109/TPDS.2024.3493953","DOIUrl":null,"url":null,"abstract":"With its advantages in ensuring low data retrieval latency and reducing backhaul network traffic, edge computing is becoming a backbone solution for many latency-sensitive applications. An increasingly large number of data is being generated at the edge, stretching the limited capacity of edge storage systems. Improving resource utilization for edge storage systems has become a significant challenge in recent years. Existing solutions attempt to achieve this goal through data placement optimization, data partitioning, data sharing, etc. These approaches overlook the data redundancy in edge storage systems, which produces substantial storage resource wastage. This motivates the need for an approach for data deduplication at the edge. However, existing data deduplication methods rely on centralized control, which is not always feasible in practical edge computing environments. This article presents Ripple, the first approach that enables edge servers to deduplicate their data in a decentralized manner. At its core, it builds a data index for each edge server, enabling them to deduplicate data without central control. With Ripple, edge servers can 1) identify data duplicates; 2) remove redundant data without violating data retrieval latency constraints; and 3) ensure data availability after deduplication. The results of trace-driven experiments conducted in a testbed system demonstrate the usefulness of Ripple in practice. Compared with the state-of-the-art approach, Ripple improves the deduplication ratio by up to 16.79% and reduces data retrieval latency by an average of 60.42%.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 1","pages":"55-66"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747114","citationCount":"0","resultStr":"{\"title\":\"Ripple: Enabling Decentralized Data Deduplication at the Edge\",\"authors\":\"Ruikun Luo;Qiang He;Feifei Chen;Song Wu;Hai Jin;Yun Yang\",\"doi\":\"10.1109/TPDS.2024.3493953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With its advantages in ensuring low data retrieval latency and reducing backhaul network traffic, edge computing is becoming a backbone solution for many latency-sensitive applications. An increasingly large number of data is being generated at the edge, stretching the limited capacity of edge storage systems. Improving resource utilization for edge storage systems has become a significant challenge in recent years. Existing solutions attempt to achieve this goal through data placement optimization, data partitioning, data sharing, etc. These approaches overlook the data redundancy in edge storage systems, which produces substantial storage resource wastage. This motivates the need for an approach for data deduplication at the edge. However, existing data deduplication methods rely on centralized control, which is not always feasible in practical edge computing environments. This article presents Ripple, the first approach that enables edge servers to deduplicate their data in a decentralized manner. At its core, it builds a data index for each edge server, enabling them to deduplicate data without central control. With Ripple, edge servers can 1) identify data duplicates; 2) remove redundant data without violating data retrieval latency constraints; and 3) ensure data availability after deduplication. The results of trace-driven experiments conducted in a testbed system demonstrate the usefulness of Ripple in practice. Compared with the state-of-the-art approach, Ripple improves the deduplication ratio by up to 16.79% and reduces data retrieval latency by an average of 60.42%.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 1\",\"pages\":\"55-66\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747114\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747114/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10747114/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Ripple: Enabling Decentralized Data Deduplication at the Edge
With its advantages in ensuring low data retrieval latency and reducing backhaul network traffic, edge computing is becoming a backbone solution for many latency-sensitive applications. An increasingly large number of data is being generated at the edge, stretching the limited capacity of edge storage systems. Improving resource utilization for edge storage systems has become a significant challenge in recent years. Existing solutions attempt to achieve this goal through data placement optimization, data partitioning, data sharing, etc. These approaches overlook the data redundancy in edge storage systems, which produces substantial storage resource wastage. This motivates the need for an approach for data deduplication at the edge. However, existing data deduplication methods rely on centralized control, which is not always feasible in practical edge computing environments. This article presents Ripple, the first approach that enables edge servers to deduplicate their data in a decentralized manner. At its core, it builds a data index for each edge server, enabling them to deduplicate data without central control. With Ripple, edge servers can 1) identify data duplicates; 2) remove redundant data without violating data retrieval latency constraints; and 3) ensure data availability after deduplication. The results of trace-driven experiments conducted in a testbed system demonstrate the usefulness of Ripple in practice. Compared with the state-of-the-art approach, Ripple improves the deduplication ratio by up to 16.79% and reduces data retrieval latency by an average of 60.42%.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.