用于中国缺失数据人群肺癌数字化预检的可解释机器学习模型

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Shuaijie Zhang, Qing Wang, Xifeng Hu, Botao Zhang, Shuangshuang Sun, Ying Yuan, Xiaofeng Jia, Yuanyuan Yu, Fuzhong Xue
{"title":"用于中国缺失数据人群肺癌数字化预检的可解释机器学习模型","authors":"Shuaijie Zhang, Qing Wang, Xifeng Hu, Botao Zhang, Shuangshuang Sun, Ying Yuan, Xiaofeng Jia, Yuanyuan Yu, Fuzhong Xue","doi":"10.1038/s41746-024-01309-z","DOIUrl":null,"url":null,"abstract":"<p>We developed an interpretable model, BOUND (Bayesian netwOrk for large-scale lUng caNcer Digital prescreening), using a comprehensive EHR dataset from the China to improve lung cancer detection rates. BOUND employs Bayesian network uncertainty inference, allowing it to predict lung cancer risk even with missing data and identify high-risk factors. Developed using data from 905,194 individuals, BOUND achieved an AUC of 0.866 in internal validation, with time- and geography-based external validations yielding AUCs of 0.848 and 0.841, respectively. In datasets with 10%–70% missing data, AUC ranged from 0.827 – 0.746. The model demonstrates strong calibration, clinical utility, and robust performance in both balanced and imbalanced datasets. A risk scorecard was also created, improving detection rates up to 6.8 times, available free online (https://drzhang1.aiself.net/). BOUND enables non-radiative, cost-effective lung cancer prescreening, excels with missing data, and addresses treatment inequities in resource-limited primary healthcare settings.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"9 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable machine learning model for digital lung cancer prescreening in Chinese populations with missing data\",\"authors\":\"Shuaijie Zhang, Qing Wang, Xifeng Hu, Botao Zhang, Shuangshuang Sun, Ying Yuan, Xiaofeng Jia, Yuanyuan Yu, Fuzhong Xue\",\"doi\":\"10.1038/s41746-024-01309-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We developed an interpretable model, BOUND (Bayesian netwOrk for large-scale lUng caNcer Digital prescreening), using a comprehensive EHR dataset from the China to improve lung cancer detection rates. BOUND employs Bayesian network uncertainty inference, allowing it to predict lung cancer risk even with missing data and identify high-risk factors. Developed using data from 905,194 individuals, BOUND achieved an AUC of 0.866 in internal validation, with time- and geography-based external validations yielding AUCs of 0.848 and 0.841, respectively. In datasets with 10%–70% missing data, AUC ranged from 0.827 – 0.746. The model demonstrates strong calibration, clinical utility, and robust performance in both balanced and imbalanced datasets. A risk scorecard was also created, improving detection rates up to 6.8 times, available free online (https://drzhang1.aiself.net/). BOUND enables non-radiative, cost-effective lung cancer prescreening, excels with missing data, and addresses treatment inequities in resource-limited primary healthcare settings.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-024-01309-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-024-01309-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

为了提高肺癌检出率,我们利用中国的综合电子病历数据集开发了一个可解释的模型 BOUND(用于大规模肺癌数字预筛的贝叶斯网络)。BOUND 采用贝叶斯网络不确定性推断法,即使在数据缺失的情况下也能预测肺癌风险,并识别高危因素。BOUND 的开发使用了 905,194 人的数据,内部验证的 AUC 为 0.866,基于时间和地域的外部验证的 AUC 分别为 0.848 和 0.841。在数据缺失率为 10%-70% 的数据集中,AUC 介于 0.827 - 0.746 之间。该模型在平衡数据集和不平衡数据集中都表现出很强的校准性、临床实用性和稳健性。此外,还创建了风险记分卡,将检测率提高了 6.8 倍,可免费在线获取 (https://drzhang1.aiself.net/)。BOUND 能够进行非放射、经济有效的肺癌预检,在数据缺失的情况下表现优异,并能在资源有限的初级医疗保健环境中解决治疗不公平的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interpretable machine learning model for digital lung cancer prescreening in Chinese populations with missing data

Interpretable machine learning model for digital lung cancer prescreening in Chinese populations with missing data

We developed an interpretable model, BOUND (Bayesian netwOrk for large-scale lUng caNcer Digital prescreening), using a comprehensive EHR dataset from the China to improve lung cancer detection rates. BOUND employs Bayesian network uncertainty inference, allowing it to predict lung cancer risk even with missing data and identify high-risk factors. Developed using data from 905,194 individuals, BOUND achieved an AUC of 0.866 in internal validation, with time- and geography-based external validations yielding AUCs of 0.848 and 0.841, respectively. In datasets with 10%–70% missing data, AUC ranged from 0.827 – 0.746. The model demonstrates strong calibration, clinical utility, and robust performance in both balanced and imbalanced datasets. A risk scorecard was also created, improving detection rates up to 6.8 times, available free online (https://drzhang1.aiself.net/). BOUND enables non-radiative, cost-effective lung cancer prescreening, excels with missing data, and addresses treatment inequities in resource-limited primary healthcare settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信