Marko Njirjak, Lucija Žužić, Marko Babić, Patrizia Janković, Erik Otović, Daniela Kalafatovic, Goran Mauša
{"title":"以混合深度学习为指导的生成式人工智能重塑自组装肽的发现过程","authors":"Marko Njirjak, Lucija Žužić, Marko Babić, Patrizia Janković, Erik Otović, Daniela Kalafatovic, Goran Mauša","doi":"10.1038/s42256-024-00928-1","DOIUrl":null,"url":null,"abstract":"<p>Supramolecular peptide-based materials have great potential for revolutionizing fields like nanotechnology and medicine. However, deciphering the intricate sequence-to-assembly pathway, essential for their real-life applications, remains a challenging endeavour. Their discovery relies primarily on empirical approaches that require substantial financial resources, impeding their disruptive potential. Consequently, despite the multitude of characterized self-assembling peptides and their demonstrated advantages, only a few peptide materials have found their way to the market. Machine learning trained on experimentally verified data presents a promising tool for quickly identifying sequences with a high propensity to self-assemble, thereby focusing resource expenditures on the most promising candidates. Here we introduce a framework that implements an accurate classifier in a metaheuristic-based generative model to navigate the search through the peptide sequence space of challenging size. For this purpose, we trained five recurrent neural networks among which the hybrid model that uses sequential information on aggregation propensity and specific physicochemical properties achieved a superior performance with 81.9% accuracy and 0.865 F1 score. Molecular dynamics simulations and experimental validation have confirmed the generative model to be 80–95% accurate in the discovery of self-assembling peptides, outperforming the current state-of-the-art models. The proposed modular framework efficiently complements human intuition in the exploration of self-assembling peptides and presents an important step in the development of intelligent laboratories for accelerated material discovery.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"18 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning\",\"authors\":\"Marko Njirjak, Lucija Žužić, Marko Babić, Patrizia Janković, Erik Otović, Daniela Kalafatovic, Goran Mauša\",\"doi\":\"10.1038/s42256-024-00928-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Supramolecular peptide-based materials have great potential for revolutionizing fields like nanotechnology and medicine. However, deciphering the intricate sequence-to-assembly pathway, essential for their real-life applications, remains a challenging endeavour. Their discovery relies primarily on empirical approaches that require substantial financial resources, impeding their disruptive potential. Consequently, despite the multitude of characterized self-assembling peptides and their demonstrated advantages, only a few peptide materials have found their way to the market. Machine learning trained on experimentally verified data presents a promising tool for quickly identifying sequences with a high propensity to self-assemble, thereby focusing resource expenditures on the most promising candidates. Here we introduce a framework that implements an accurate classifier in a metaheuristic-based generative model to navigate the search through the peptide sequence space of challenging size. For this purpose, we trained five recurrent neural networks among which the hybrid model that uses sequential information on aggregation propensity and specific physicochemical properties achieved a superior performance with 81.9% accuracy and 0.865 F1 score. Molecular dynamics simulations and experimental validation have confirmed the generative model to be 80–95% accurate in the discovery of self-assembling peptides, outperforming the current state-of-the-art models. The proposed modular framework efficiently complements human intuition in the exploration of self-assembling peptides and presents an important step in the development of intelligent laboratories for accelerated material discovery.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-024-00928-1\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00928-1","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning
Supramolecular peptide-based materials have great potential for revolutionizing fields like nanotechnology and medicine. However, deciphering the intricate sequence-to-assembly pathway, essential for their real-life applications, remains a challenging endeavour. Their discovery relies primarily on empirical approaches that require substantial financial resources, impeding their disruptive potential. Consequently, despite the multitude of characterized self-assembling peptides and their demonstrated advantages, only a few peptide materials have found their way to the market. Machine learning trained on experimentally verified data presents a promising tool for quickly identifying sequences with a high propensity to self-assemble, thereby focusing resource expenditures on the most promising candidates. Here we introduce a framework that implements an accurate classifier in a metaheuristic-based generative model to navigate the search through the peptide sequence space of challenging size. For this purpose, we trained five recurrent neural networks among which the hybrid model that uses sequential information on aggregation propensity and specific physicochemical properties achieved a superior performance with 81.9% accuracy and 0.865 F1 score. Molecular dynamics simulations and experimental validation have confirmed the generative model to be 80–95% accurate in the discovery of self-assembling peptides, outperforming the current state-of-the-art models. The proposed modular framework efficiently complements human intuition in the exploration of self-assembling peptides and presents an important step in the development of intelligent laboratories for accelerated material discovery.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.