完善精神分裂症的抗精神病治疗策略:发现基因生物标志物以加强药物反应预测

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Luan Chen, Cong Huai, Chuanfu Song, Shaochang Wu, Yong Xu, Zhenghui Yi, Jinsong Tang, Lingzi Fan, Xuming Wu, Zhenhua Ge, Chuanxin Liu, Deguo Jiang, Saizheng Weng, Guoqiang Wang, Xinfeng Zhang, Xudong Zhao, Lu Shen, Na Zhang, Hao Wu, Yongzhi Wang, Zhenglin Guo, Suli Zhang, Bixuan Jiang, Wei Zhou, Jingsong Ma, Mo Li, Yunpeng Chu, Chenxi Zhou, Qinyu Lv, Qingqing Xu, Wenli Zhu, Yan Zhang, Weibin Lian, Sha Liu, Xinrong Li, Songyin Gao, Aihong Liu, Lei He, Zhenzhen Yang, Bojian Dai, Jiaen Ye, Ruiqian Lin, Yana Lu, Qi Yan, Yalan Hu, Qinghe Xing, Hailiang Huang, Shengying Qin
{"title":"完善精神分裂症的抗精神病治疗策略:发现基因生物标志物以加强药物反应预测","authors":"Luan Chen, Cong Huai, Chuanfu Song, Shaochang Wu, Yong Xu, Zhenghui Yi, Jinsong Tang, Lingzi Fan, Xuming Wu, Zhenhua Ge, Chuanxin Liu, Deguo Jiang, Saizheng Weng, Guoqiang Wang, Xinfeng Zhang, Xudong Zhao, Lu Shen, Na Zhang, Hao Wu, Yongzhi Wang, Zhenglin Guo, Suli Zhang, Bixuan Jiang, Wei Zhou, Jingsong Ma, Mo Li, Yunpeng Chu, Chenxi Zhou, Qinyu Lv, Qingqing Xu, Wenli Zhu, Yan Zhang, Weibin Lian, Sha Liu, Xinrong Li, Songyin Gao, Aihong Liu, Lei He, Zhenzhen Yang, Bojian Dai, Jiaen Ye, Ruiqian Lin, Yana Lu, Qi Yan, Yalan Hu, Qinghe Xing, Hailiang Huang, Shengying Qin","doi":"10.1038/s41380-024-02841-w","DOIUrl":null,"url":null,"abstract":"<p>Schizophrenia (SCZ) is a severe mental disorder affecting around 1% of individuals worldwide. The variability in response to antipsychotic drugs (APDs) among SCZ patients presents a significant challenge for clinicians in determining the most effective medication. In this study, we investigated the biological markers and established a predictive model for APD response based on a large-scale genome-wide association study using 3269 Chinese schizophrenia patients. Each participant underwent an 8-week treatment regimen with one of five mono-APDs: olanzapine, risperidone, aripiprazole, quetiapine, or amisulpride. By dividing the response into ordinal groups of “high”, “medium”, and “low”, we mitigated the bias of unclear treatment outcome and identified three novel significantly associated genetic loci in or near <i>CDH12</i>, <i>WDR11</i>, and <i>ELAVL2</i>. Additionally, we developed predictive models of response to each specific APDs, with accuracies ranging from 79.5% to 98.0%. In sum, we established an effective method to predict schizophrenia patients’ response to APDs across three categories, integrating novel biomarkers to guide personalized medicine strategies.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"99 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining antipsychotic treatment strategies in schizophrenia: discovery of genetic biomarkers for enhanced drug response prediction\",\"authors\":\"Luan Chen, Cong Huai, Chuanfu Song, Shaochang Wu, Yong Xu, Zhenghui Yi, Jinsong Tang, Lingzi Fan, Xuming Wu, Zhenhua Ge, Chuanxin Liu, Deguo Jiang, Saizheng Weng, Guoqiang Wang, Xinfeng Zhang, Xudong Zhao, Lu Shen, Na Zhang, Hao Wu, Yongzhi Wang, Zhenglin Guo, Suli Zhang, Bixuan Jiang, Wei Zhou, Jingsong Ma, Mo Li, Yunpeng Chu, Chenxi Zhou, Qinyu Lv, Qingqing Xu, Wenli Zhu, Yan Zhang, Weibin Lian, Sha Liu, Xinrong Li, Songyin Gao, Aihong Liu, Lei He, Zhenzhen Yang, Bojian Dai, Jiaen Ye, Ruiqian Lin, Yana Lu, Qi Yan, Yalan Hu, Qinghe Xing, Hailiang Huang, Shengying Qin\",\"doi\":\"10.1038/s41380-024-02841-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Schizophrenia (SCZ) is a severe mental disorder affecting around 1% of individuals worldwide. The variability in response to antipsychotic drugs (APDs) among SCZ patients presents a significant challenge for clinicians in determining the most effective medication. In this study, we investigated the biological markers and established a predictive model for APD response based on a large-scale genome-wide association study using 3269 Chinese schizophrenia patients. Each participant underwent an 8-week treatment regimen with one of five mono-APDs: olanzapine, risperidone, aripiprazole, quetiapine, or amisulpride. By dividing the response into ordinal groups of “high”, “medium”, and “low”, we mitigated the bias of unclear treatment outcome and identified three novel significantly associated genetic loci in or near <i>CDH12</i>, <i>WDR11</i>, and <i>ELAVL2</i>. Additionally, we developed predictive models of response to each specific APDs, with accuracies ranging from 79.5% to 98.0%. In sum, we established an effective method to predict schizophrenia patients’ response to APDs across three categories, integrating novel biomarkers to guide personalized medicine strategies.</p>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-024-02841-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02841-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精神分裂症(SCZ)是一种严重的精神障碍,全世界约有 1%的人患有此病。精神分裂症患者对抗精神病药物(APD)的反应各不相同,这给临床医生确定最有效的药物治疗带来了巨大挑战。在这项研究中,我们利用 3269 名中国精神分裂症患者进行了大规模的全基因组关联研究,在此基础上调查了生物标记物,并建立了 APD 反应的预测模型。每位受试者都接受了为期8周的治疗,从奥氮平、利培酮、阿立哌唑、喹硫平和阿米舒必利这五种单一APD中选择一种。通过将反应分为 "高"、"中 "和 "低 "三个序数组,我们减轻了治疗结果不明确的偏差,并在 CDH12、WDR11 和 ELAVL2 中或其附近发现了三个显著相关的新基因位点。此外,我们还建立了对每种特定 APDs 反应的预测模型,准确率从 79.5% 到 98.0%。总之,我们建立了一种有效的方法来预测精神分裂症患者对三类 APDs 的反应,并整合了新型生物标志物来指导个性化医疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Refining antipsychotic treatment strategies in schizophrenia: discovery of genetic biomarkers for enhanced drug response prediction

Refining antipsychotic treatment strategies in schizophrenia: discovery of genetic biomarkers for enhanced drug response prediction

Schizophrenia (SCZ) is a severe mental disorder affecting around 1% of individuals worldwide. The variability in response to antipsychotic drugs (APDs) among SCZ patients presents a significant challenge for clinicians in determining the most effective medication. In this study, we investigated the biological markers and established a predictive model for APD response based on a large-scale genome-wide association study using 3269 Chinese schizophrenia patients. Each participant underwent an 8-week treatment regimen with one of five mono-APDs: olanzapine, risperidone, aripiprazole, quetiapine, or amisulpride. By dividing the response into ordinal groups of “high”, “medium”, and “low”, we mitigated the bias of unclear treatment outcome and identified three novel significantly associated genetic loci in or near CDH12, WDR11, and ELAVL2. Additionally, we developed predictive models of response to each specific APDs, with accuracies ranging from 79.5% to 98.0%. In sum, we established an effective method to predict schizophrenia patients’ response to APDs across three categories, integrating novel biomarkers to guide personalized medicine strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信