受均质 Dirichlet 边界条件约束的半线性扩散 PDE 与变阶时间分数 Caputo 导数

IF 2.5 2区 数学 Q1 MATHEMATICS
Marian Slodička
{"title":"受均质 Dirichlet 边界条件约束的半线性扩散 PDE 与变阶时间分数 Caputo 导数","authors":"Marian Slodička","doi":"10.1007/s13540-024-00352-7","DOIUrl":null,"url":null,"abstract":"<p>We investigate a semilinear problem for a fractional diffusion equation with variable order Caputo fractional derivative <span>\\(\\left( \\partial _t^{\\beta (t)} u\\right) (t)\\)</span> subject to homogeneous Dirichlet boundary conditions. The right-hand side of the governing PDE is nonlinear (Lipschitz continuous) and it contains a weakly singular Volterra operator. The whole process takes place in a bounded Lipschitz domain in <span>\\({{\\mathbb {R}}}^d\\)</span>. We establish the existence of a unique solution in <span>\\(C\\left( [0,T],L^{2} (\\varOmega )\\right) \\)</span> if <span>\\(u_0\\in L^{2} (\\varOmega )\\)</span>. Moreover, if <span>\\(\\mathcal {L}^{\\gamma }u_0\\in L^{2} (\\varOmega )\\)</span> for some <span>\\(0&lt;\\gamma &lt;1-\\frac{\\delta }{\\beta (0)}\\)</span> (<span>\\(\\delta \\)</span> depends on the right-hand-side of the PDE) then <span>\\(\\mathcal {L}^{\\gamma }u\\in C\\left( {[}0,T{]},L^{2} (\\varOmega )\\right) \\)</span>.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"177 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semilinear diffusion PDE with variable order time-fractional Caputo derivative subject to homogeneous Dirichlet boundary conditions\",\"authors\":\"Marian Slodička\",\"doi\":\"10.1007/s13540-024-00352-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate a semilinear problem for a fractional diffusion equation with variable order Caputo fractional derivative <span>\\\\(\\\\left( \\\\partial _t^{\\\\beta (t)} u\\\\right) (t)\\\\)</span> subject to homogeneous Dirichlet boundary conditions. The right-hand side of the governing PDE is nonlinear (Lipschitz continuous) and it contains a weakly singular Volterra operator. The whole process takes place in a bounded Lipschitz domain in <span>\\\\({{\\\\mathbb {R}}}^d\\\\)</span>. We establish the existence of a unique solution in <span>\\\\(C\\\\left( [0,T],L^{2} (\\\\varOmega )\\\\right) \\\\)</span> if <span>\\\\(u_0\\\\in L^{2} (\\\\varOmega )\\\\)</span>. Moreover, if <span>\\\\(\\\\mathcal {L}^{\\\\gamma }u_0\\\\in L^{2} (\\\\varOmega )\\\\)</span> for some <span>\\\\(0&lt;\\\\gamma &lt;1-\\\\frac{\\\\delta }{\\\\beta (0)}\\\\)</span> (<span>\\\\(\\\\delta \\\\)</span> depends on the right-hand-side of the PDE) then <span>\\\\(\\\\mathcal {L}^{\\\\gamma }u\\\\in C\\\\left( {[}0,T{]},L^{2} (\\\\varOmega )\\\\right) \\\\)</span>.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00352-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00352-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个半线性问题,它是一个具有变阶卡普托分数导数的分数扩散方程(\left( \partial _t^{\beta (t)} u\right) (t)\),受制于同质德里赫特边界条件。支配 PDE 的右边是非线性的(Lipschitz 连续),它包含一个弱奇异的 Volterra 算子。整个过程发生在 \({{\mathbb {R}}}^d\) 的有界 Lipschitz 域中。如果 \(u_0\in L^{2} (\varOmega )\), 我们就能确定在 \(C\left( [0,T],L^{2} (\varOmega )\right) \) 中存在唯一的解。此外,如果(u_0in L^{2} (\varOmega )\mathcal {L}^{gamma }u_0\in L^{2} for some \(0<\gamma <;(\(\delta \) depends on the right-hand-side of the PDE) then \(\mathcal {L}^{\gamma }u\in C\left( {[}0,T{]},L^{2} (\varOmega )\right) \).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semilinear diffusion PDE with variable order time-fractional Caputo derivative subject to homogeneous Dirichlet boundary conditions

We investigate a semilinear problem for a fractional diffusion equation with variable order Caputo fractional derivative \(\left( \partial _t^{\beta (t)} u\right) (t)\) subject to homogeneous Dirichlet boundary conditions. The right-hand side of the governing PDE is nonlinear (Lipschitz continuous) and it contains a weakly singular Volterra operator. The whole process takes place in a bounded Lipschitz domain in \({{\mathbb {R}}}^d\). We establish the existence of a unique solution in \(C\left( [0,T],L^{2} (\varOmega )\right) \) if \(u_0\in L^{2} (\varOmega )\). Moreover, if \(\mathcal {L}^{\gamma }u_0\in L^{2} (\varOmega )\) for some \(0<\gamma <1-\frac{\delta }{\beta (0)}\) (\(\delta \) depends on the right-hand-side of the PDE) then \(\mathcal {L}^{\gamma }u\in C\left( {[}0,T{]},L^{2} (\varOmega )\right) \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信