Farhad Maleki, Linda Moy, Reza Forghani, Tapotosh Ghosh, Katie Ovens, Steve Langer, Pouria Rouzrokh, Bardia Khosravi, Ali Ganjizadeh, Daniel Warren, Roxana Daneshjou, Mana Moassefi, Atlas Haddadi Avval, Susan Sotardi, Neil Tenenholtz, Felipe Kitamura, Timothy Kline
{"title":"RIDGE:医学图像分割模型的可重复性、完整性、可靠性、通用性和效率评估。","authors":"Farhad Maleki, Linda Moy, Reza Forghani, Tapotosh Ghosh, Katie Ovens, Steve Langer, Pouria Rouzrokh, Bardia Khosravi, Ali Ganjizadeh, Daniel Warren, Roxana Daneshjou, Mana Moassefi, Atlas Haddadi Avval, Susan Sotardi, Neil Tenenholtz, Felipe Kitamura, Timothy Kline","doi":"10.1007/s10278-024-01282-9","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning techniques hold immense promise for advancing medical image analysis, particularly in tasks like image segmentation, where precise annotation of regions or volumes of interest within medical images is crucial but manually laborious and prone to interobserver and intraobserver biases. As such, deep learning approaches could provide automated solutions for such applications. However, the potential of these techniques is often undermined by challenges in reproducibility and generalizability, which are key barriers to their clinical adoption. This paper introduces the RIDGE checklist, a comprehensive framework designed to assess the Reproducibility, Integrity, Dependability, Generalizability, and Efficiency of deep learning-based medical image segmentation models. The RIDGE checklist is not just a tool for evaluation but also a guideline for researchers striving to improve the quality and transparency of their work. By adhering to the principles outlined in the RIDGE checklist, researchers can ensure that their developed segmentation models are robust, scientifically valid, and applicable in a clinical setting.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models.\",\"authors\":\"Farhad Maleki, Linda Moy, Reza Forghani, Tapotosh Ghosh, Katie Ovens, Steve Langer, Pouria Rouzrokh, Bardia Khosravi, Ali Ganjizadeh, Daniel Warren, Roxana Daneshjou, Mana Moassefi, Atlas Haddadi Avval, Susan Sotardi, Neil Tenenholtz, Felipe Kitamura, Timothy Kline\",\"doi\":\"10.1007/s10278-024-01282-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning techniques hold immense promise for advancing medical image analysis, particularly in tasks like image segmentation, where precise annotation of regions or volumes of interest within medical images is crucial but manually laborious and prone to interobserver and intraobserver biases. As such, deep learning approaches could provide automated solutions for such applications. However, the potential of these techniques is often undermined by challenges in reproducibility and generalizability, which are key barriers to their clinical adoption. This paper introduces the RIDGE checklist, a comprehensive framework designed to assess the Reproducibility, Integrity, Dependability, Generalizability, and Efficiency of deep learning-based medical image segmentation models. The RIDGE checklist is not just a tool for evaluation but also a guideline for researchers striving to improve the quality and transparency of their work. By adhering to the principles outlined in the RIDGE checklist, researchers can ensure that their developed segmentation models are robust, scientifically valid, and applicable in a clinical setting.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01282-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01282-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models.
Deep learning techniques hold immense promise for advancing medical image analysis, particularly in tasks like image segmentation, where precise annotation of regions or volumes of interest within medical images is crucial but manually laborious and prone to interobserver and intraobserver biases. As such, deep learning approaches could provide automated solutions for such applications. However, the potential of these techniques is often undermined by challenges in reproducibility and generalizability, which are key barriers to their clinical adoption. This paper introduces the RIDGE checklist, a comprehensive framework designed to assess the Reproducibility, Integrity, Dependability, Generalizability, and Efficiency of deep learning-based medical image segmentation models. The RIDGE checklist is not just a tool for evaluation but also a guideline for researchers striving to improve the quality and transparency of their work. By adhering to the principles outlined in the RIDGE checklist, researchers can ensure that their developed segmentation models are robust, scientifically valid, and applicable in a clinical setting.