Man Zhou, Yaru Wang, Yuan Wang, Tao Tu, Jie Zhang, Xiaolu Wang, Guijie Zhang, Huoqing Huang, Bin Yao, Huiying Luo, Xing Qin
{"title":"使用羟基自由基和锰过氧化物酶对玉米秸秆进行顺序预处理,以实现高效的酶法糖化。","authors":"Man Zhou, Yaru Wang, Yuan Wang, Tao Tu, Jie Zhang, Xiaolu Wang, Guijie Zhang, Huoqing Huang, Bin Yao, Huiying Luo, Xing Qin","doi":"10.1186/s13068-024-02583-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>White rot fungi produce various reactive oxygen species and ligninolytic enzymes for lignocellulose deconstruction. However, their interactions during the deconstruction of lignocellulosic structural barriers for efficient enzymatic saccharification remain unclear.</p><h3>Results</h3><p>Herein, the extracellular enzyme activities and secretomic analysis revealed the sequential expression of hydroxyl radical (⋅OH) and manganese peroxidases (MnPs) for lignocellulose deconstruction by the white rot fungus <i>Irpex lacteus</i>. Subsequently, in vitro functional studies found that ⋅OH possessed the ability to disrupt the smooth surface structure of corn stover, resulting in increased enzymatic saccharification and cellulose accessibility. Purified recombinant MnPs from <i>I. lacteus</i> were able to cleave the β-<i>O</i>-4 bond in phenolic and non-phenolic lignin model dimers without the help of any mediators. Furthermore, the sequential pretreatment of corn stover with ⋅OH and MnP exhibited significant synergistic effects, increasing enzymatic saccharification and cellulose accessibility by 2.9-fold and 1.8-fold, respectively.</p><h3>Conclusions</h3><p>These results proved for the first time the synergistic effects of ⋅OH and MnP pretreatment in improving the enzymatic saccharification and cellulose accessibility of corn stover. These findings also demonstrated the potential application of ⋅OH and MnP pretreatment for the efficient enzymatic saccharification of corn stover.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02583-5","citationCount":"0","resultStr":"{\"title\":\"Sequential pretreatment with hydroxyl radical and manganese peroxidase for the efficient enzymatic saccharification of corn stover\",\"authors\":\"Man Zhou, Yaru Wang, Yuan Wang, Tao Tu, Jie Zhang, Xiaolu Wang, Guijie Zhang, Huoqing Huang, Bin Yao, Huiying Luo, Xing Qin\",\"doi\":\"10.1186/s13068-024-02583-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>White rot fungi produce various reactive oxygen species and ligninolytic enzymes for lignocellulose deconstruction. However, their interactions during the deconstruction of lignocellulosic structural barriers for efficient enzymatic saccharification remain unclear.</p><h3>Results</h3><p>Herein, the extracellular enzyme activities and secretomic analysis revealed the sequential expression of hydroxyl radical (⋅OH) and manganese peroxidases (MnPs) for lignocellulose deconstruction by the white rot fungus <i>Irpex lacteus</i>. Subsequently, in vitro functional studies found that ⋅OH possessed the ability to disrupt the smooth surface structure of corn stover, resulting in increased enzymatic saccharification and cellulose accessibility. Purified recombinant MnPs from <i>I. lacteus</i> were able to cleave the β-<i>O</i>-4 bond in phenolic and non-phenolic lignin model dimers without the help of any mediators. Furthermore, the sequential pretreatment of corn stover with ⋅OH and MnP exhibited significant synergistic effects, increasing enzymatic saccharification and cellulose accessibility by 2.9-fold and 1.8-fold, respectively.</p><h3>Conclusions</h3><p>These results proved for the first time the synergistic effects of ⋅OH and MnP pretreatment in improving the enzymatic saccharification and cellulose accessibility of corn stover. These findings also demonstrated the potential application of ⋅OH and MnP pretreatment for the efficient enzymatic saccharification of corn stover.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02583-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02583-5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02583-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Sequential pretreatment with hydroxyl radical and manganese peroxidase for the efficient enzymatic saccharification of corn stover
Background
White rot fungi produce various reactive oxygen species and ligninolytic enzymes for lignocellulose deconstruction. However, their interactions during the deconstruction of lignocellulosic structural barriers for efficient enzymatic saccharification remain unclear.
Results
Herein, the extracellular enzyme activities and secretomic analysis revealed the sequential expression of hydroxyl radical (⋅OH) and manganese peroxidases (MnPs) for lignocellulose deconstruction by the white rot fungus Irpex lacteus. Subsequently, in vitro functional studies found that ⋅OH possessed the ability to disrupt the smooth surface structure of corn stover, resulting in increased enzymatic saccharification and cellulose accessibility. Purified recombinant MnPs from I. lacteus were able to cleave the β-O-4 bond in phenolic and non-phenolic lignin model dimers without the help of any mediators. Furthermore, the sequential pretreatment of corn stover with ⋅OH and MnP exhibited significant synergistic effects, increasing enzymatic saccharification and cellulose accessibility by 2.9-fold and 1.8-fold, respectively.
Conclusions
These results proved for the first time the synergistic effects of ⋅OH and MnP pretreatment in improving the enzymatic saccharification and cellulose accessibility of corn stover. These findings also demonstrated the potential application of ⋅OH and MnP pretreatment for the efficient enzymatic saccharification of corn stover.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis