{"title":"在奥拉帕尼耐药的 BRCA1/2MUT 卵巢癌模型中,通过抑制 ATR/CHK1 通路恢复奥拉帕尼疗效的分子机制。","authors":"Łukasz Biegała , Małgorzata Statkiewicz , Arkadiusz Gajek , Izabela Szymczak-Pajor , Natalia Rusetska , Agnieszka Śliwińska , Agnieszka Marczak , Michał Mikula , Aneta Rogalska","doi":"10.1016/j.bbadis.2024.167574","DOIUrl":null,"url":null,"abstract":"<div><div>Resistance to olaparib inevitably develops in ovarian cancer (OC) patients, highlighting the necessity for effective strategies to improve its efficacy. Here, we established a novel olaparib-resistant patient-derived xenograft model of high-grade serous OC with <em>BRCA1/2</em> mutations and examined the molecular characteristics of acquired resistance and resensitization to olaparib in treatment-naïve tumors <em>in vivo</em>. Olaparib-resistant xenografts were treated with olaparib, ATR inhibitor (ATRi, ceralasertib), CHK1 inhibitor (CHK1i, MK-8776) or their combinations. Proliferation, apoptosis, ATR/CHK1 activity, PARP signaling, DNA damage response (DDR), epithelial-to-mesenchymal transition (EMT), and MDR1 expression, were examined <em>via</em> RT-qPCR, western blot, and immunohistochemistry. Resistant tumors exhibited defects in PARP and ATR/CHK1 signaling, accompanied by altered expression of proteins involved in DDR and EMT. Olaparib rechallenge combined with ATR/CHK1 inhibitors showed promising synergistic effects on tumor growth inhibition. Mechanistically, combined treatments suppressed tumor proliferation without increasing apoptosis or necrosis, while inducing tumor cell vacuolization indicative of cell death. ATRi combined with olaparib induced or augmented downregulation of ATR, CHK1, PARP1, PARG, BRCA1, γH2AX, and PARylated protein expression, while reversing olaparib-induced upregulation of vimentin, BRCA2, and 53BP1. Our collective findings indicate that ATR/CHK1 pathway inhibition restores the olaparib efficacy in resistant <em>BRCA1/2</em><sup>MUT</sup> high-grade serous OC, highlighting promising approach for olaparib rechallenge of non-responsive patients. Uncovered mechanisms might improve our understanding of acquisition and overcoming resistance to olaparib in ovarian cancer.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 2","pages":"Article 167574"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms restoring olaparib efficacy through ATR/CHK1 pathway inhibition in olaparib-resistant BRCA1/2MUT ovarian cancer models\",\"authors\":\"Łukasz Biegała , Małgorzata Statkiewicz , Arkadiusz Gajek , Izabela Szymczak-Pajor , Natalia Rusetska , Agnieszka Śliwińska , Agnieszka Marczak , Michał Mikula , Aneta Rogalska\",\"doi\":\"10.1016/j.bbadis.2024.167574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resistance to olaparib inevitably develops in ovarian cancer (OC) patients, highlighting the necessity for effective strategies to improve its efficacy. Here, we established a novel olaparib-resistant patient-derived xenograft model of high-grade serous OC with <em>BRCA1/2</em> mutations and examined the molecular characteristics of acquired resistance and resensitization to olaparib in treatment-naïve tumors <em>in vivo</em>. Olaparib-resistant xenografts were treated with olaparib, ATR inhibitor (ATRi, ceralasertib), CHK1 inhibitor (CHK1i, MK-8776) or their combinations. Proliferation, apoptosis, ATR/CHK1 activity, PARP signaling, DNA damage response (DDR), epithelial-to-mesenchymal transition (EMT), and MDR1 expression, were examined <em>via</em> RT-qPCR, western blot, and immunohistochemistry. Resistant tumors exhibited defects in PARP and ATR/CHK1 signaling, accompanied by altered expression of proteins involved in DDR and EMT. Olaparib rechallenge combined with ATR/CHK1 inhibitors showed promising synergistic effects on tumor growth inhibition. Mechanistically, combined treatments suppressed tumor proliferation without increasing apoptosis or necrosis, while inducing tumor cell vacuolization indicative of cell death. ATRi combined with olaparib induced or augmented downregulation of ATR, CHK1, PARP1, PARG, BRCA1, γH2AX, and PARylated protein expression, while reversing olaparib-induced upregulation of vimentin, BRCA2, and 53BP1. Our collective findings indicate that ATR/CHK1 pathway inhibition restores the olaparib efficacy in resistant <em>BRCA1/2</em><sup>MUT</sup> high-grade serous OC, highlighting promising approach for olaparib rechallenge of non-responsive patients. Uncovered mechanisms might improve our understanding of acquisition and overcoming resistance to olaparib in ovarian cancer.</div></div>\",\"PeriodicalId\":8821,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"volume\":\"1871 2\",\"pages\":\"Article 167574\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925443924005684\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443924005684","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular mechanisms restoring olaparib efficacy through ATR/CHK1 pathway inhibition in olaparib-resistant BRCA1/2MUT ovarian cancer models
Resistance to olaparib inevitably develops in ovarian cancer (OC) patients, highlighting the necessity for effective strategies to improve its efficacy. Here, we established a novel olaparib-resistant patient-derived xenograft model of high-grade serous OC with BRCA1/2 mutations and examined the molecular characteristics of acquired resistance and resensitization to olaparib in treatment-naïve tumors in vivo. Olaparib-resistant xenografts were treated with olaparib, ATR inhibitor (ATRi, ceralasertib), CHK1 inhibitor (CHK1i, MK-8776) or their combinations. Proliferation, apoptosis, ATR/CHK1 activity, PARP signaling, DNA damage response (DDR), epithelial-to-mesenchymal transition (EMT), and MDR1 expression, were examined via RT-qPCR, western blot, and immunohistochemistry. Resistant tumors exhibited defects in PARP and ATR/CHK1 signaling, accompanied by altered expression of proteins involved in DDR and EMT. Olaparib rechallenge combined with ATR/CHK1 inhibitors showed promising synergistic effects on tumor growth inhibition. Mechanistically, combined treatments suppressed tumor proliferation without increasing apoptosis or necrosis, while inducing tumor cell vacuolization indicative of cell death. ATRi combined with olaparib induced or augmented downregulation of ATR, CHK1, PARP1, PARG, BRCA1, γH2AX, and PARylated protein expression, while reversing olaparib-induced upregulation of vimentin, BRCA2, and 53BP1. Our collective findings indicate that ATR/CHK1 pathway inhibition restores the olaparib efficacy in resistant BRCA1/2MUT high-grade serous OC, highlighting promising approach for olaparib rechallenge of non-responsive patients. Uncovered mechanisms might improve our understanding of acquisition and overcoming resistance to olaparib in ovarian cancer.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.