{"title":"运动调节血浆可通过激活海马胆碱能回路和增强BDNF/TrkB信号转导改善术后认知功能障碍。","authors":"Xiaodi Lu, Weijie Xiong, Zhuo Chen, Yurou Li, Fengyan Xu, Xue Yang, Meiwen Long, Wenhan Guo, Shuliang Wu, Liang Sun, Guonian Wang","doi":"10.1186/s12964-024-01938-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and surgery, particularly in the elderly, leading to increased mortality and reduced quality of life. Despite its prevalence, there are no effective clinical treatments. Exercise has shown cognitive benefits in aging and various diseases, which can be transferred to sedentary animals through plasma. However, it is unclear if exercise-conditioned plasma can replicate these benefits in the context of POCD.</p><p><strong>Methods: </strong>Sixteen-month-old male C57BL/6J mice underwent 30 days of voluntary running wheel training or received systemic administration of exercise-conditioned plasma, followed by tibial fracture surgery under general anesthesia at 17 months of age. Cognitive performance, hippocampal synaptic deficits, neuroinflammation, BDNF/TrkB signaling, and medial septum (MS)-hippocampal cholinergic activity were evaluated through immunohistochemical staining, transmission electron microscopy, Western blotting, and biochemical assays. To investigate the role of hippocampal BDNF signaling and cholinergic activity in the therapeutic effects, the TrkB antagonist ANA-12 and the cholinergic receptor muscarinic 1 (CHRM1) antagonist trihexyphenidyl (THP) were administered via intraperitoneal injection, and adeno-associated virus (AAV) vectors expressing Chrm1 shRNA were delivered via intrahippocampal stereotaxic microinjection.</p><p><strong>Results: </strong>Exercise-conditioned plasma mimicked the benefits of exercise, alleviating cognitive decline induced by anesthesia/surgery, restoring hippocampal synapse formation and levels of regulators for synaptic plasticity, inhibiting neuroinflammatory responses to surgery by microglia and astrocytes, augmenting BDNF production and TrkB phosphorylation in hippocampal neurons, astrocytes, and microglia, upregulating MS expression of choline acetyltransferase (CHAT) and hippocampal expression of CHRM1 in neurons and astrocytes, and enhancing hippocampal cholinergic innervation and acetylcholine release. Conversely, ANA-12 administration blocked TrkB activation and reduced the protective effects on cognition, synaptic deficits, and neuroinflammatory reactivity of glial cells post-surgery. Similarly, THP administration or intrahippocampal delivery of AAV-Chrm1 shRNA inhibited the activation of the hippocampal cholinergic circuit by exercise plasma, negating the cognitive and neuropathological benefits and reducing BDNF/TrkB signaling enhancements.</p><p><strong>Conclusion: </strong>Exercise-conditioned plasma can replicate the protective effects of exercise against anesthesia/surgery-induced neuroinflammation, synaptic, and cognitive impairments, at least partly, through CHRM1-dependent regulation of hippocampal cholinergic activity and BDNF/TrkB signaling.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"551"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exercise-conditioned plasma ameliorates postoperative cognitive dysfunction by activating hippocampal cholinergic circuit and enhancing BDNF/TrkB signaling.\",\"authors\":\"Xiaodi Lu, Weijie Xiong, Zhuo Chen, Yurou Li, Fengyan Xu, Xue Yang, Meiwen Long, Wenhan Guo, Shuliang Wu, Liang Sun, Guonian Wang\",\"doi\":\"10.1186/s12964-024-01938-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and surgery, particularly in the elderly, leading to increased mortality and reduced quality of life. Despite its prevalence, there are no effective clinical treatments. Exercise has shown cognitive benefits in aging and various diseases, which can be transferred to sedentary animals through plasma. However, it is unclear if exercise-conditioned plasma can replicate these benefits in the context of POCD.</p><p><strong>Methods: </strong>Sixteen-month-old male C57BL/6J mice underwent 30 days of voluntary running wheel training or received systemic administration of exercise-conditioned plasma, followed by tibial fracture surgery under general anesthesia at 17 months of age. Cognitive performance, hippocampal synaptic deficits, neuroinflammation, BDNF/TrkB signaling, and medial septum (MS)-hippocampal cholinergic activity were evaluated through immunohistochemical staining, transmission electron microscopy, Western blotting, and biochemical assays. To investigate the role of hippocampal BDNF signaling and cholinergic activity in the therapeutic effects, the TrkB antagonist ANA-12 and the cholinergic receptor muscarinic 1 (CHRM1) antagonist trihexyphenidyl (THP) were administered via intraperitoneal injection, and adeno-associated virus (AAV) vectors expressing Chrm1 shRNA were delivered via intrahippocampal stereotaxic microinjection.</p><p><strong>Results: </strong>Exercise-conditioned plasma mimicked the benefits of exercise, alleviating cognitive decline induced by anesthesia/surgery, restoring hippocampal synapse formation and levels of regulators for synaptic plasticity, inhibiting neuroinflammatory responses to surgery by microglia and astrocytes, augmenting BDNF production and TrkB phosphorylation in hippocampal neurons, astrocytes, and microglia, upregulating MS expression of choline acetyltransferase (CHAT) and hippocampal expression of CHRM1 in neurons and astrocytes, and enhancing hippocampal cholinergic innervation and acetylcholine release. Conversely, ANA-12 administration blocked TrkB activation and reduced the protective effects on cognition, synaptic deficits, and neuroinflammatory reactivity of glial cells post-surgery. Similarly, THP administration or intrahippocampal delivery of AAV-Chrm1 shRNA inhibited the activation of the hippocampal cholinergic circuit by exercise plasma, negating the cognitive and neuropathological benefits and reducing BDNF/TrkB signaling enhancements.</p><p><strong>Conclusion: </strong>Exercise-conditioned plasma can replicate the protective effects of exercise against anesthesia/surgery-induced neuroinflammation, synaptic, and cognitive impairments, at least partly, through CHRM1-dependent regulation of hippocampal cholinergic activity and BDNF/TrkB signaling.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"551\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01938-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01938-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exercise-conditioned plasma ameliorates postoperative cognitive dysfunction by activating hippocampal cholinergic circuit and enhancing BDNF/TrkB signaling.
Background: Postoperative cognitive dysfunction (POCD) is a prevalent complication following anesthesia and surgery, particularly in the elderly, leading to increased mortality and reduced quality of life. Despite its prevalence, there are no effective clinical treatments. Exercise has shown cognitive benefits in aging and various diseases, which can be transferred to sedentary animals through plasma. However, it is unclear if exercise-conditioned plasma can replicate these benefits in the context of POCD.
Methods: Sixteen-month-old male C57BL/6J mice underwent 30 days of voluntary running wheel training or received systemic administration of exercise-conditioned plasma, followed by tibial fracture surgery under general anesthesia at 17 months of age. Cognitive performance, hippocampal synaptic deficits, neuroinflammation, BDNF/TrkB signaling, and medial septum (MS)-hippocampal cholinergic activity were evaluated through immunohistochemical staining, transmission electron microscopy, Western blotting, and biochemical assays. To investigate the role of hippocampal BDNF signaling and cholinergic activity in the therapeutic effects, the TrkB antagonist ANA-12 and the cholinergic receptor muscarinic 1 (CHRM1) antagonist trihexyphenidyl (THP) were administered via intraperitoneal injection, and adeno-associated virus (AAV) vectors expressing Chrm1 shRNA were delivered via intrahippocampal stereotaxic microinjection.
Results: Exercise-conditioned plasma mimicked the benefits of exercise, alleviating cognitive decline induced by anesthesia/surgery, restoring hippocampal synapse formation and levels of regulators for synaptic plasticity, inhibiting neuroinflammatory responses to surgery by microglia and astrocytes, augmenting BDNF production and TrkB phosphorylation in hippocampal neurons, astrocytes, and microglia, upregulating MS expression of choline acetyltransferase (CHAT) and hippocampal expression of CHRM1 in neurons and astrocytes, and enhancing hippocampal cholinergic innervation and acetylcholine release. Conversely, ANA-12 administration blocked TrkB activation and reduced the protective effects on cognition, synaptic deficits, and neuroinflammatory reactivity of glial cells post-surgery. Similarly, THP administration or intrahippocampal delivery of AAV-Chrm1 shRNA inhibited the activation of the hippocampal cholinergic circuit by exercise plasma, negating the cognitive and neuropathological benefits and reducing BDNF/TrkB signaling enhancements.
Conclusion: Exercise-conditioned plasma can replicate the protective effects of exercise against anesthesia/surgery-induced neuroinflammation, synaptic, and cognitive impairments, at least partly, through CHRM1-dependent regulation of hippocampal cholinergic activity and BDNF/TrkB signaling.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.