Junghun Chae , Roktaek Lim , Thomas L.P. Martin , Cheol-Min Ghim , Pan-Jun Kim
{"title":"揭示迈克尔-门顿速率定律的盲点:弛豫动力学在分子复合物形成中的作用。","authors":"Junghun Chae , Roktaek Lim , Thomas L.P. Martin , Cheol-Min Ghim , Pan-Jun Kim","doi":"10.1016/j.jtbi.2024.111989","DOIUrl":null,"url":null,"abstract":"<div><div>The century-long Michaelis–Menten rate law and its modifications in the modeling of biochemical rate processes stand on the assumption that the concentration of the complex of interacting molecules, at each moment, rapidly approaches an equilibrium (quasi-steady state) compared to the pace of molecular concentration changes. Yet, in the case of actively time-varying molecular concentrations with transient or oscillatory dynamics, the deviation of the complex profile from the quasi-steady state becomes relevant. A recent theoretical approach, known as the effective time-delay scheme (ETS), suggests that the delay from the relaxation time of molecular complex formation contributes to the substantial breakdown of the quasi-steady state assumption. Here, we systematically expand this ETS and inquire into the comprehensive roles of relaxation dynamics in complex formation. Through the modeling of rhythmic protein–protein and protein–DNA interactions and the mammalian circadian clock, our analysis reveals the effect of the relaxation dynamics beyond the time delay, which extends to the dampening of changes in the complex concentration with a reduction in the oscillation amplitude compared to the quasi-steady state. Interestingly, the combined effect of the time delay and amplitude reduction shapes both qualitative and quantitative oscillatory patterns such as the emergence and variability of the mammalian circadian rhythms. These findings highlight the downside of the routine assumption of quasi-steady states and enhance the mechanistic understanding of rich time-varying biomolecular processes.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"597 ","pages":"Article 111989"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enlightening the blind spot of the Michaelis–Menten rate law: The role of relaxation dynamics in molecular complex formation\",\"authors\":\"Junghun Chae , Roktaek Lim , Thomas L.P. Martin , Cheol-Min Ghim , Pan-Jun Kim\",\"doi\":\"10.1016/j.jtbi.2024.111989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The century-long Michaelis–Menten rate law and its modifications in the modeling of biochemical rate processes stand on the assumption that the concentration of the complex of interacting molecules, at each moment, rapidly approaches an equilibrium (quasi-steady state) compared to the pace of molecular concentration changes. Yet, in the case of actively time-varying molecular concentrations with transient or oscillatory dynamics, the deviation of the complex profile from the quasi-steady state becomes relevant. A recent theoretical approach, known as the effective time-delay scheme (ETS), suggests that the delay from the relaxation time of molecular complex formation contributes to the substantial breakdown of the quasi-steady state assumption. Here, we systematically expand this ETS and inquire into the comprehensive roles of relaxation dynamics in complex formation. Through the modeling of rhythmic protein–protein and protein–DNA interactions and the mammalian circadian clock, our analysis reveals the effect of the relaxation dynamics beyond the time delay, which extends to the dampening of changes in the complex concentration with a reduction in the oscillation amplitude compared to the quasi-steady state. Interestingly, the combined effect of the time delay and amplitude reduction shapes both qualitative and quantitative oscillatory patterns such as the emergence and variability of the mammalian circadian rhythms. These findings highlight the downside of the routine assumption of quasi-steady states and enhance the mechanistic understanding of rich time-varying biomolecular processes.</div></div>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\"597 \",\"pages\":\"Article 111989\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002741\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002741","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Enlightening the blind spot of the Michaelis–Menten rate law: The role of relaxation dynamics in molecular complex formation
The century-long Michaelis–Menten rate law and its modifications in the modeling of biochemical rate processes stand on the assumption that the concentration of the complex of interacting molecules, at each moment, rapidly approaches an equilibrium (quasi-steady state) compared to the pace of molecular concentration changes. Yet, in the case of actively time-varying molecular concentrations with transient or oscillatory dynamics, the deviation of the complex profile from the quasi-steady state becomes relevant. A recent theoretical approach, known as the effective time-delay scheme (ETS), suggests that the delay from the relaxation time of molecular complex formation contributes to the substantial breakdown of the quasi-steady state assumption. Here, we systematically expand this ETS and inquire into the comprehensive roles of relaxation dynamics in complex formation. Through the modeling of rhythmic protein–protein and protein–DNA interactions and the mammalian circadian clock, our analysis reveals the effect of the relaxation dynamics beyond the time delay, which extends to the dampening of changes in the complex concentration with a reduction in the oscillation amplitude compared to the quasi-steady state. Interestingly, the combined effect of the time delay and amplitude reduction shapes both qualitative and quantitative oscillatory patterns such as the emergence and variability of the mammalian circadian rhythms. These findings highlight the downside of the routine assumption of quasi-steady states and enhance the mechanistic understanding of rich time-varying biomolecular processes.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.