Eucalyptus crebra(窄叶铁树)叶内真菌的季节和空间动态。

IF 3.3 3区 生物学 Q2 ECOLOGY
Neysa Mai, Md Javed Foysal, Verlaine J Timms, Leanne A Pearson, Caitlin S Romanis, Toby J T Mills, Jeff R Powell, Brett A Neilan
{"title":"Eucalyptus crebra(窄叶铁树)叶内真菌的季节和空间动态。","authors":"Neysa Mai, Md Javed Foysal, Verlaine J Timms, Leanne A Pearson, Caitlin S Romanis, Toby J T Mills, Jeff R Powell, Brett A Neilan","doi":"10.1007/s00248-024-02455-3","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal endophytes play an important role in improving the health and productivity of native and cultivated plant species. Despite their ecological and industrial importance, few eucalypt species have been studied in terms of their endophyte communities. We examined the seasonal and spatial dynamics of fungal leaf endophytes in the model species, Eucalyptus crebra (narrow-leaved ironbark), using ITS-based amplicon sequencing. Alpha and beta diversity analyses revealed significantly higher species richness in summer compared to autumn and spring. Similarly, two-way ANOVA analysis showed significantly higher species diversity in summer compared to autumn (observed p < 0.001, Chao1 p < 0.005) and spring (observed p < 0.005, Chao1 p < 0.005). No difference in Shannon index was observed among different canopy levels across the season. Beta-diversity showed differences in fungal composition across the seasons and at various canopy levels based on unweighted UniFrac distance metric (PERMANOVA season p < 0.001, canopy p < 0.05), signifying distinct separation of fungi based on presence-absence. Ascomycota was the most abundant and diverse phylum and was present throughout the year. In contrast, Basidiomycota was only observed during cooler and drier seasons. Neofusicoccum was the most abundant genus, but distribution fluctuated significantly across the seasons. Pestalotiopsis and Neopestalotiopsis were most abundant in the low leaf canopy, whereas Pseudosydowia was most abundant in the high canopy. This study indicates that the diversity and abundance of endophytic fungi in the leaves of healthy E. crebra trees fluctuate seasonally and across canopy levels. The data generated can be used as a baseline for assessing and potentially modulating the health of E. crebra and other important Eucalyptus spp.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"142"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal and Spatial Dynamics of Fungal Leaf Endophytes in Eucalyptus crebra (Narrow-Leaved Ironbark).\",\"authors\":\"Neysa Mai, Md Javed Foysal, Verlaine J Timms, Leanne A Pearson, Caitlin S Romanis, Toby J T Mills, Jeff R Powell, Brett A Neilan\",\"doi\":\"10.1007/s00248-024-02455-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungal endophytes play an important role in improving the health and productivity of native and cultivated plant species. Despite their ecological and industrial importance, few eucalypt species have been studied in terms of their endophyte communities. We examined the seasonal and spatial dynamics of fungal leaf endophytes in the model species, Eucalyptus crebra (narrow-leaved ironbark), using ITS-based amplicon sequencing. Alpha and beta diversity analyses revealed significantly higher species richness in summer compared to autumn and spring. Similarly, two-way ANOVA analysis showed significantly higher species diversity in summer compared to autumn (observed p < 0.001, Chao1 p < 0.005) and spring (observed p < 0.005, Chao1 p < 0.005). No difference in Shannon index was observed among different canopy levels across the season. Beta-diversity showed differences in fungal composition across the seasons and at various canopy levels based on unweighted UniFrac distance metric (PERMANOVA season p < 0.001, canopy p < 0.05), signifying distinct separation of fungi based on presence-absence. Ascomycota was the most abundant and diverse phylum and was present throughout the year. In contrast, Basidiomycota was only observed during cooler and drier seasons. Neofusicoccum was the most abundant genus, but distribution fluctuated significantly across the seasons. Pestalotiopsis and Neopestalotiopsis were most abundant in the low leaf canopy, whereas Pseudosydowia was most abundant in the high canopy. This study indicates that the diversity and abundance of endophytic fungi in the leaves of healthy E. crebra trees fluctuate seasonally and across canopy levels. The data generated can be used as a baseline for assessing and potentially modulating the health of E. crebra and other important Eucalyptus spp.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"87 1\",\"pages\":\"142\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-024-02455-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02455-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真菌内生菌在改善本地和栽培植物物种的健康和生产力方面发挥着重要作用。尽管桉树具有重要的生态和工业价值,但很少有人研究过它们的内生菌群落。我们利用基于 ITS 的扩增片段测序技术,研究了模式物种桉树(狭叶铁皮)叶片内生真菌的季节和空间动态。阿尔法和贝塔多样性分析表明,夏季的物种丰富度明显高于秋季和春季。同样,双向方差分析显示,夏季的物种多样性明显高于秋季(观察 p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seasonal and Spatial Dynamics of Fungal Leaf Endophytes in Eucalyptus crebra (Narrow-Leaved Ironbark).

Fungal endophytes play an important role in improving the health and productivity of native and cultivated plant species. Despite their ecological and industrial importance, few eucalypt species have been studied in terms of their endophyte communities. We examined the seasonal and spatial dynamics of fungal leaf endophytes in the model species, Eucalyptus crebra (narrow-leaved ironbark), using ITS-based amplicon sequencing. Alpha and beta diversity analyses revealed significantly higher species richness in summer compared to autumn and spring. Similarly, two-way ANOVA analysis showed significantly higher species diversity in summer compared to autumn (observed p < 0.001, Chao1 p < 0.005) and spring (observed p < 0.005, Chao1 p < 0.005). No difference in Shannon index was observed among different canopy levels across the season. Beta-diversity showed differences in fungal composition across the seasons and at various canopy levels based on unweighted UniFrac distance metric (PERMANOVA season p < 0.001, canopy p < 0.05), signifying distinct separation of fungi based on presence-absence. Ascomycota was the most abundant and diverse phylum and was present throughout the year. In contrast, Basidiomycota was only observed during cooler and drier seasons. Neofusicoccum was the most abundant genus, but distribution fluctuated significantly across the seasons. Pestalotiopsis and Neopestalotiopsis were most abundant in the low leaf canopy, whereas Pseudosydowia was most abundant in the high canopy. This study indicates that the diversity and abundance of endophytic fungi in the leaves of healthy E. crebra trees fluctuate seasonally and across canopy levels. The data generated can be used as a baseline for assessing and potentially modulating the health of E. crebra and other important Eucalyptus spp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Ecology
Microbial Ecology 生物-海洋与淡水生物学
CiteScore
6.90
自引率
2.80%
发文量
212
审稿时长
3-8 weeks
期刊介绍: The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信