合成糖皮质激素地塞米松和淀粉样蛋白β在人类嗅觉神经球衍生细胞中的趋同效应

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zane Farnum, Radhika Mani, Aidan Bindoff, Richard Wilson, Adoni Fiotakis, Jessica Stephens, Ellie Cho, Alan Mackay-Sim, Duncan Sinclair
{"title":"合成糖皮质激素地塞米松和淀粉样蛋白β在人类嗅觉神经球衍生细胞中的趋同效应","authors":"Zane Farnum, Radhika Mani, Aidan Bindoff, Richard Wilson, Adoni Fiotakis, Jessica Stephens, Ellie Cho, Alan Mackay-Sim, Duncan Sinclair","doi":"10.1111/jnc.16263","DOIUrl":null,"url":null,"abstract":"<p><p>Stressful life events and glucocorticoid (stress) hormones appear to increase the risk of Alzheimer's disease and hasten its progression, but the reasons for this remain unclear. One potential explanation is that when amyloid β (Aβ) pathology is accumulating in the preclinical disease stage, glucocorticoid receptor signalling during stressful events exacerbates cellular dysfunction caused by Aβ. Alternatively, Aβ may disrupt glucocorticoid receptor signalling. To explore these possibilities, we investigated whether the synthetic glucocorticoid dexamethasone and Aβ have overlapping effects on the cellular proteome and whether Aβ influences canonical glucocorticoid receptor function. Human olfactory neurosphere-derived (ONS) cells, collected from the olfactory mucosa of six adult donors, were treated with soluble Aβ40 or Aβ42 followed by dexamethasone. Proteins were quantified by mass spectrometry. After 32 h treatment, Aβ40 and Aβ42 both induced profound changes in innate immunity-related proteins. After 72 h, Aβ42 formed widespread aggregates and induced few proteomic changes, whereas Aβ40 remained soluble and altered expression of mitochondrial and innate immunity-related proteins. ONS cells revealed overlapping impacts of Aβ40 and dexamethasone, with 23 proteins altered by both treatments. For 16 proteins (including eight mitochondrial proteins) dexamethasone counteracted the effects of Aβ40. For example, caspase 4 and methylmalonate-semialdehyde dehydrogenase were increased by Aβ40 and decreased by dexamethasone. Consistent with this finding, Aβ40 increased, but dexamethasone decreased, ONS cell proliferation. For seven proteins, including superoxide dismutase [Mn] mitochondrial, dexamethasone exacerbated the effects of Aβ40. For some proteins, including complement C3, the effects of dexamethasone differed depending on whether Aβ40 was present or absent. Neither Aβ species influenced glucocorticoid receptor nuclear translocation. Overall, this study revealed that glucocorticoid receptor signalling modifies the intracellular effects of Aß40, counteracting some effects and exacerbating others. It suggests that cellular mechanisms through which glucocorticoid receptor signalling influences Alzheimer's disease risk/progression are complex and determined by the balance of beneficial and detrimental glucocorticoid effects.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergent effects of synthetic glucocorticoid dexamethasone and amyloid beta in human olfactory neurosphere-derived cells.\",\"authors\":\"Zane Farnum, Radhika Mani, Aidan Bindoff, Richard Wilson, Adoni Fiotakis, Jessica Stephens, Ellie Cho, Alan Mackay-Sim, Duncan Sinclair\",\"doi\":\"10.1111/jnc.16263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stressful life events and glucocorticoid (stress) hormones appear to increase the risk of Alzheimer's disease and hasten its progression, but the reasons for this remain unclear. One potential explanation is that when amyloid β (Aβ) pathology is accumulating in the preclinical disease stage, glucocorticoid receptor signalling during stressful events exacerbates cellular dysfunction caused by Aβ. Alternatively, Aβ may disrupt glucocorticoid receptor signalling. To explore these possibilities, we investigated whether the synthetic glucocorticoid dexamethasone and Aβ have overlapping effects on the cellular proteome and whether Aβ influences canonical glucocorticoid receptor function. Human olfactory neurosphere-derived (ONS) cells, collected from the olfactory mucosa of six adult donors, were treated with soluble Aβ40 or Aβ42 followed by dexamethasone. Proteins were quantified by mass spectrometry. After 32 h treatment, Aβ40 and Aβ42 both induced profound changes in innate immunity-related proteins. After 72 h, Aβ42 formed widespread aggregates and induced few proteomic changes, whereas Aβ40 remained soluble and altered expression of mitochondrial and innate immunity-related proteins. ONS cells revealed overlapping impacts of Aβ40 and dexamethasone, with 23 proteins altered by both treatments. For 16 proteins (including eight mitochondrial proteins) dexamethasone counteracted the effects of Aβ40. For example, caspase 4 and methylmalonate-semialdehyde dehydrogenase were increased by Aβ40 and decreased by dexamethasone. Consistent with this finding, Aβ40 increased, but dexamethasone decreased, ONS cell proliferation. For seven proteins, including superoxide dismutase [Mn] mitochondrial, dexamethasone exacerbated the effects of Aβ40. For some proteins, including complement C3, the effects of dexamethasone differed depending on whether Aβ40 was present or absent. Neither Aβ species influenced glucocorticoid receptor nuclear translocation. Overall, this study revealed that glucocorticoid receptor signalling modifies the intracellular effects of Aß40, counteracting some effects and exacerbating others. It suggests that cellular mechanisms through which glucocorticoid receptor signalling influences Alzheimer's disease risk/progression are complex and determined by the balance of beneficial and detrimental glucocorticoid effects.</p>\",\"PeriodicalId\":16527,\"journal\":{\"name\":\"Journal of Neurochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neurochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jnc.16263\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16263","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

紧张的生活事件和糖皮质激素(应激)似乎会增加阿尔茨海默病的风险并加速其进展,但其原因仍不清楚。一种可能的解释是,当淀粉样蛋白 β(Aβ)病理学在临床疾病前期积累时,应激事件中的糖皮质激素受体信号会加剧 Aβ 导致的细胞功能障碍。或者,Aβ可能会破坏糖皮质激素受体信号传导。为了探索这些可能性,我们研究了合成糖皮质激素地塞米松和Aβ是否对细胞蛋白质组有重叠作用,以及Aβ是否影响典型糖皮质激素受体的功能。用可溶性 Aβ40 或 Aβ42 处理人嗅神经球(ONS)细胞(采集自六名成年供体的嗅粘膜),然后用地塞米松处理。蛋白质通过质谱法进行定量。处理 32 小时后,Aβ40 和 Aβ42 均诱导先天免疫相关蛋白发生深刻变化。72 小时后,Aβ42 形成广泛的聚集体,诱导的蛋白质组变化很小,而 Aβ40 仍保持可溶性,并改变了线粒体和先天免疫相关蛋白质的表达。ONS细胞显示,Aβ40和地塞米松的影响是重叠的,两种处理方法都改变了23种蛋白质。地塞米松抵消了Aβ40对16种蛋白质(包括8种线粒体蛋白质)的影响。例如,Aβ40 使 Caspase 4 和甲基丙二酸半醛脱氢酶增加,而地塞米松使其减少。与这一发现相一致的是,Aβ40 增加了 ONS 细胞的增殖,而地塞米松则减少了增殖。对于包括线粒体超氧化物歧化酶[Mn]在内的七种蛋白质,地塞米松加剧了 Aβ40 的作用。对于补体 C3 等一些蛋白质,地塞米松的作用因 Aβ40 的存在与否而不同。两种 Aβ 均不影响糖皮质激素受体的核转位。总之,这项研究揭示了糖皮质激素受体信号改变了 Aß40 的细胞内效应,抵消了一些效应,加剧了另一些效应。研究表明,糖皮质激素受体信号影响阿尔茨海默病风险/进展的细胞机制是复杂的,并由糖皮质激素的有益和有害效应的平衡决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergent effects of synthetic glucocorticoid dexamethasone and amyloid beta in human olfactory neurosphere-derived cells.

Stressful life events and glucocorticoid (stress) hormones appear to increase the risk of Alzheimer's disease and hasten its progression, but the reasons for this remain unclear. One potential explanation is that when amyloid β (Aβ) pathology is accumulating in the preclinical disease stage, glucocorticoid receptor signalling during stressful events exacerbates cellular dysfunction caused by Aβ. Alternatively, Aβ may disrupt glucocorticoid receptor signalling. To explore these possibilities, we investigated whether the synthetic glucocorticoid dexamethasone and Aβ have overlapping effects on the cellular proteome and whether Aβ influences canonical glucocorticoid receptor function. Human olfactory neurosphere-derived (ONS) cells, collected from the olfactory mucosa of six adult donors, were treated with soluble Aβ40 or Aβ42 followed by dexamethasone. Proteins were quantified by mass spectrometry. After 32 h treatment, Aβ40 and Aβ42 both induced profound changes in innate immunity-related proteins. After 72 h, Aβ42 formed widespread aggregates and induced few proteomic changes, whereas Aβ40 remained soluble and altered expression of mitochondrial and innate immunity-related proteins. ONS cells revealed overlapping impacts of Aβ40 and dexamethasone, with 23 proteins altered by both treatments. For 16 proteins (including eight mitochondrial proteins) dexamethasone counteracted the effects of Aβ40. For example, caspase 4 and methylmalonate-semialdehyde dehydrogenase were increased by Aβ40 and decreased by dexamethasone. Consistent with this finding, Aβ40 increased, but dexamethasone decreased, ONS cell proliferation. For seven proteins, including superoxide dismutase [Mn] mitochondrial, dexamethasone exacerbated the effects of Aβ40. For some proteins, including complement C3, the effects of dexamethasone differed depending on whether Aβ40 was present or absent. Neither Aβ species influenced glucocorticoid receptor nuclear translocation. Overall, this study revealed that glucocorticoid receptor signalling modifies the intracellular effects of Aß40, counteracting some effects and exacerbating others. It suggests that cellular mechanisms through which glucocorticoid receptor signalling influences Alzheimer's disease risk/progression are complex and determined by the balance of beneficial and detrimental glucocorticoid effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信