NEFL调节NRN1介导的线粒体通路,促进二乙酰吗啡诱导的神经元凋亡

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Sensen Zhu, Liping Su, Mengjie Zhuang, Li Liu, Min Ji, Jingyu Liu, Chenlu Dai, Jinling Xiao, Yaling Guan, Long Yang, Hongwei Pu
{"title":"NEFL调节NRN1介导的线粒体通路,促进二乙酰吗啡诱导的神经元凋亡","authors":"Sensen Zhu, Liping Su, Mengjie Zhuang, Li Liu, Min Ji, Jingyu Liu, Chenlu Dai, Jinling Xiao, Yaling Guan, Long Yang, Hongwei Pu","doi":"10.1007/s12035-024-04629-z","DOIUrl":null,"url":null,"abstract":"<p><p>Diacetylmorphine abuse is a major social problem that jeopardizes the world, and abuse can cause serious neurological disorders. Apoptosis plays an important role in neurological diseases. A previous study by our group found that the brain tissue of diacetylmorphine-addicted rats showed severe vacuole-like degeneration and increased apoptosis, but the exact mechanism has not yet been reported. We used TMT technology to sequence the diseased brain tissue of rats, and selected neurofilament light chain (NEFL) and neuritin (NRN1) as the focus of our research. We explore the possible roles and mechanisms played by both. Based on the construction of apoptotic cell model, we used overexpression/silencing lentiviral vectors to interfere with the expression of NEFL in PC12 cells, and the results suggested that NEFL could regulate NRN1 to affect the apoptosis level. To further understand the specific mechanism, we used transmission electron microscopy to observe the ultrastructure of apoptotic cells, and the results showed that compared with the control group, mitochondria in the model group showed obvious vacuolation as well as expansion, a significant increase in the accumulation of ROS, and a significant decrease in the mitochondrial membrane potential; after overexpression/silencing of NEFL, these changes were found to occur along with the alteration of NEFL expression. In summary, we conclude that diacetylmorphine induces neuronal apoptosis, and the specific mechanism is that NEFL regulates the NRN1-mediated mitochondrial pathway to promote apoptosis.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NEFL Modulates NRN1-Mediated Mitochondrial Pathway to Promote Diacetylmorphine-Induced Neuronal Apoptosis.\",\"authors\":\"Sensen Zhu, Liping Su, Mengjie Zhuang, Li Liu, Min Ji, Jingyu Liu, Chenlu Dai, Jinling Xiao, Yaling Guan, Long Yang, Hongwei Pu\",\"doi\":\"10.1007/s12035-024-04629-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diacetylmorphine abuse is a major social problem that jeopardizes the world, and abuse can cause serious neurological disorders. Apoptosis plays an important role in neurological diseases. A previous study by our group found that the brain tissue of diacetylmorphine-addicted rats showed severe vacuole-like degeneration and increased apoptosis, but the exact mechanism has not yet been reported. We used TMT technology to sequence the diseased brain tissue of rats, and selected neurofilament light chain (NEFL) and neuritin (NRN1) as the focus of our research. We explore the possible roles and mechanisms played by both. Based on the construction of apoptotic cell model, we used overexpression/silencing lentiviral vectors to interfere with the expression of NEFL in PC12 cells, and the results suggested that NEFL could regulate NRN1 to affect the apoptosis level. To further understand the specific mechanism, we used transmission electron microscopy to observe the ultrastructure of apoptotic cells, and the results showed that compared with the control group, mitochondria in the model group showed obvious vacuolation as well as expansion, a significant increase in the accumulation of ROS, and a significant decrease in the mitochondrial membrane potential; after overexpression/silencing of NEFL, these changes were found to occur along with the alteration of NEFL expression. In summary, we conclude that diacetylmorphine induces neuronal apoptosis, and the specific mechanism is that NEFL regulates the NRN1-mediated mitochondrial pathway to promote apoptosis.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-024-04629-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04629-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

滥用二乙酰吗啡是危害世界的一大社会问题,滥用二乙酰吗啡会导致严重的神经系统疾病。细胞凋亡在神经系统疾病中扮演着重要角色。我们小组之前的一项研究发现,双乙酰吗啡成瘾大鼠的脑组织出现了严重的空泡样变性,细胞凋亡增加,但具体机制尚未见报道。我们利用 TMT 技术对大鼠病变脑组织进行测序,并选择神经丝蛋白轻链(NEFL)和神经鞘磷脂(NRN1)作为研究重点。我们探讨了二者可能的作用和机制。在构建凋亡细胞模型的基础上,我们使用过表达/沉默慢病毒载体干扰NEFL在PC12细胞中的表达,结果表明NEFL可以调控NRN1影响细胞凋亡水平。为了进一步了解其具体机制,我们利用透射电镜观察了凋亡细胞的超微结构,结果发现与对照组相比,模型组的线粒体出现了明显的空泡化以及膨大,ROS的积累明显增加,线粒体膜电位明显下降;在过表达/沉默NEFL后,发现这些变化是随着NEFL表达的改变而发生的。综上所述,我们得出结论:二乙酰吗啡诱导神经元凋亡,其具体机制是NEFL调节NRN1介导的线粒体通路,促进神经元凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NEFL Modulates NRN1-Mediated Mitochondrial Pathway to Promote Diacetylmorphine-Induced Neuronal Apoptosis.

Diacetylmorphine abuse is a major social problem that jeopardizes the world, and abuse can cause serious neurological disorders. Apoptosis plays an important role in neurological diseases. A previous study by our group found that the brain tissue of diacetylmorphine-addicted rats showed severe vacuole-like degeneration and increased apoptosis, but the exact mechanism has not yet been reported. We used TMT technology to sequence the diseased brain tissue of rats, and selected neurofilament light chain (NEFL) and neuritin (NRN1) as the focus of our research. We explore the possible roles and mechanisms played by both. Based on the construction of apoptotic cell model, we used overexpression/silencing lentiviral vectors to interfere with the expression of NEFL in PC12 cells, and the results suggested that NEFL could regulate NRN1 to affect the apoptosis level. To further understand the specific mechanism, we used transmission electron microscopy to observe the ultrastructure of apoptotic cells, and the results showed that compared with the control group, mitochondria in the model group showed obvious vacuolation as well as expansion, a significant increase in the accumulation of ROS, and a significant decrease in the mitochondrial membrane potential; after overexpression/silencing of NEFL, these changes were found to occur along with the alteration of NEFL expression. In summary, we conclude that diacetylmorphine induces neuronal apoptosis, and the specific mechanism is that NEFL regulates the NRN1-mediated mitochondrial pathway to promote apoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信