{"title":"非金属氧还原催化剂筛选和关键指标的密度泛函理论研究。","authors":"Jinlong Wang, Jinmin Guo, Weiwei Shao, Bingling He, Daping Liu, Wei Song, Xiao-Chun Li","doi":"10.1002/cphc.202400830","DOIUrl":null,"url":null,"abstract":"<p><p>This study systematically investigates the oxygen reduction reaction (ORR) catalytic activity of graphene doped with various non-metallic impurities. The non-metal elements include boron (B), silicon (Si), nitrogen (N), phosphorus (P), arsenic (As), oxygen (O), sulfur (S), selenium (Se), tellurium (Te), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). We found that adsorbates tend to adsorb on positively charged impurity atoms. We identified several substrates with good catalytic activity, all of which have an ORR overpotential of around 0.6 V. We further verified the thermodynamic stability of these substrates and found them to be very stable. We summarized the optimal adsorption energies for ORR intermediates O2H, O, and OH to be -1.9, -3.4, and -2.4 eV, respectively, and validated their reasonableness. Finally, we used simple linear functions to fit the relationship between the adsorption energies of O2H, O, and OH and the charge and magnetic moment of the adsorption site atoms. This model can roughly predict the ORR catalytic activity of doped graphene, facilitating the faster screening of excellent ORR catalysts.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400830"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density Functional Theory Study on Screening and Key Metrics for Non-metallic Oxygen Reduction Catalysts.\",\"authors\":\"Jinlong Wang, Jinmin Guo, Weiwei Shao, Bingling He, Daping Liu, Wei Song, Xiao-Chun Li\",\"doi\":\"10.1002/cphc.202400830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study systematically investigates the oxygen reduction reaction (ORR) catalytic activity of graphene doped with various non-metallic impurities. The non-metal elements include boron (B), silicon (Si), nitrogen (N), phosphorus (P), arsenic (As), oxygen (O), sulfur (S), selenium (Se), tellurium (Te), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). We found that adsorbates tend to adsorb on positively charged impurity atoms. We identified several substrates with good catalytic activity, all of which have an ORR overpotential of around 0.6 V. We further verified the thermodynamic stability of these substrates and found them to be very stable. We summarized the optimal adsorption energies for ORR intermediates O2H, O, and OH to be -1.9, -3.4, and -2.4 eV, respectively, and validated their reasonableness. Finally, we used simple linear functions to fit the relationship between the adsorption energies of O2H, O, and OH and the charge and magnetic moment of the adsorption site atoms. This model can roughly predict the ORR catalytic activity of doped graphene, facilitating the faster screening of excellent ORR catalysts.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400830\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400830\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400830","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Density Functional Theory Study on Screening and Key Metrics for Non-metallic Oxygen Reduction Catalysts.
This study systematically investigates the oxygen reduction reaction (ORR) catalytic activity of graphene doped with various non-metallic impurities. The non-metal elements include boron (B), silicon (Si), nitrogen (N), phosphorus (P), arsenic (As), oxygen (O), sulfur (S), selenium (Se), tellurium (Te), fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). We found that adsorbates tend to adsorb on positively charged impurity atoms. We identified several substrates with good catalytic activity, all of which have an ORR overpotential of around 0.6 V. We further verified the thermodynamic stability of these substrates and found them to be very stable. We summarized the optimal adsorption energies for ORR intermediates O2H, O, and OH to be -1.9, -3.4, and -2.4 eV, respectively, and validated their reasonableness. Finally, we used simple linear functions to fit the relationship between the adsorption energies of O2H, O, and OH and the charge and magnetic moment of the adsorption site atoms. This model can roughly predict the ORR catalytic activity of doped graphene, facilitating the faster screening of excellent ORR catalysts.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.