Alastair Copland, Gillian M Mackie, Lisa Scarfe, Elizabeth Jinks, David A J Lecky, Nancy Gudgeon, Riahne McQuade, Masahiro Ono, Manja Barthel, Wolf-Dietrich Hardt, Hiroshi Ohno, Wilma H M Hoevenaar, Sarah Dimeloe, David Bending, Kendle M Maslowski
{"title":"沙门氏菌癌症疗法以 T 细胞免疫的附带代价破坏肿瘤的代谢。","authors":"Alastair Copland, Gillian M Mackie, Lisa Scarfe, Elizabeth Jinks, David A J Lecky, Nancy Gudgeon, Riahne McQuade, Masahiro Ono, Manja Barthel, Wolf-Dietrich Hardt, Hiroshi Ohno, Wilma H M Hoevenaar, Sarah Dimeloe, David Bending, Kendle M Maslowski","doi":"10.1038/s44321-024-00159-2","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial cancer therapy (BCT) is a promising therapeutic for solid tumours. Salmonella enterica Typhimurium (STm) is well-studied amongst bacterial vectors due to advantages in genetic modification and metabolic adaptation. A longstanding paradox is the redundancy of T cells for treatment efficacy; instead, STm BCT depends on innate phagocytes for tumour control. Here, we used distal T cell receptor (TCR) and IFNγ reporter mice (Nr4a3-Tocky-Ifnγ-YFP) and a colorectal cancer (CRC) model to interrogate T cell activity during BCT with attenuated STm. We found that colonic tumour infiltrating lymphocytes (TILs) exhibited a variety of activation defects, including IFN-γ production decoupled from TCR signalling, decreased polyfunctionality and reduced central memory (T<sub>CM</sub>) formation. Modelling of T-cell-tumour interactions with a tumour organoid platform revealed an intact TCR signalosome, but paralysed metabolic reprogramming due to inhibition of the master metabolic controller, c-Myc. Restoration of c-Myc by deletion of the bacterial asparaginase ansB reinvigorated T cell activation, but at the cost of decreased metabolic control of the tumour by STm. This work shows for the first time that T cells are metabolically defective during BCT, but also that this same phenomenon is inexorably tied to intrinsic tumour suppression by the bacterial vector.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salmonella cancer therapy metabolically disrupts tumours at the collateral cost of T cell immunity.\",\"authors\":\"Alastair Copland, Gillian M Mackie, Lisa Scarfe, Elizabeth Jinks, David A J Lecky, Nancy Gudgeon, Riahne McQuade, Masahiro Ono, Manja Barthel, Wolf-Dietrich Hardt, Hiroshi Ohno, Wilma H M Hoevenaar, Sarah Dimeloe, David Bending, Kendle M Maslowski\",\"doi\":\"10.1038/s44321-024-00159-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial cancer therapy (BCT) is a promising therapeutic for solid tumours. Salmonella enterica Typhimurium (STm) is well-studied amongst bacterial vectors due to advantages in genetic modification and metabolic adaptation. A longstanding paradox is the redundancy of T cells for treatment efficacy; instead, STm BCT depends on innate phagocytes for tumour control. Here, we used distal T cell receptor (TCR) and IFNγ reporter mice (Nr4a3-Tocky-Ifnγ-YFP) and a colorectal cancer (CRC) model to interrogate T cell activity during BCT with attenuated STm. We found that colonic tumour infiltrating lymphocytes (TILs) exhibited a variety of activation defects, including IFN-γ production decoupled from TCR signalling, decreased polyfunctionality and reduced central memory (T<sub>CM</sub>) formation. Modelling of T-cell-tumour interactions with a tumour organoid platform revealed an intact TCR signalosome, but paralysed metabolic reprogramming due to inhibition of the master metabolic controller, c-Myc. Restoration of c-Myc by deletion of the bacterial asparaginase ansB reinvigorated T cell activation, but at the cost of decreased metabolic control of the tumour by STm. This work shows for the first time that T cells are metabolically defective during BCT, but also that this same phenomenon is inexorably tied to intrinsic tumour suppression by the bacterial vector.</p>\",\"PeriodicalId\":11597,\"journal\":{\"name\":\"EMBO Molecular Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s44321-024-00159-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-024-00159-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
细菌癌症疗法(BCT)是一种治疗实体瘤的前景广阔的疗法。在细菌载体中,鼠伤寒沙门氏菌(STm)因其在基因修饰和代谢适应方面的优势而受到广泛研究。一个长期存在的悖论是T细胞对治疗效果的冗余性;相反,STm BCT依赖于先天性吞噬细胞来控制肿瘤。在这里,我们使用远端 T 细胞受体(TCR)和 IFNγ 报告小鼠(Nr4a3-Tocky-Ifnγ-YFP)以及结肠直肠癌(CRC)模型来研究 STm BCT 期间 T 细胞的活性。我们发现结肠肿瘤浸润淋巴细胞(TILs)表现出多种活化缺陷,包括IFN-γ的产生与TCR信号脱钩、多功能性降低和中心记忆(TCM)形成减少。利用肿瘤类器官平台建立的T细胞-肿瘤相互作用模型显示,TCR信号体完好无损,但由于主代谢控制器c-Myc受到抑制,导致代谢重编程瘫痪。通过删除细菌天冬酰胺酶ansB恢复c-Myc可重新激活T细胞,但代价是STm对肿瘤的代谢控制能力下降。这项研究首次表明,T细胞在BCT期间存在代谢缺陷,而且这一现象与细菌载体对肿瘤的内在抑制有着不可分割的联系。
Salmonella cancer therapy metabolically disrupts tumours at the collateral cost of T cell immunity.
Bacterial cancer therapy (BCT) is a promising therapeutic for solid tumours. Salmonella enterica Typhimurium (STm) is well-studied amongst bacterial vectors due to advantages in genetic modification and metabolic adaptation. A longstanding paradox is the redundancy of T cells for treatment efficacy; instead, STm BCT depends on innate phagocytes for tumour control. Here, we used distal T cell receptor (TCR) and IFNγ reporter mice (Nr4a3-Tocky-Ifnγ-YFP) and a colorectal cancer (CRC) model to interrogate T cell activity during BCT with attenuated STm. We found that colonic tumour infiltrating lymphocytes (TILs) exhibited a variety of activation defects, including IFN-γ production decoupled from TCR signalling, decreased polyfunctionality and reduced central memory (TCM) formation. Modelling of T-cell-tumour interactions with a tumour organoid platform revealed an intact TCR signalosome, but paralysed metabolic reprogramming due to inhibition of the master metabolic controller, c-Myc. Restoration of c-Myc by deletion of the bacterial asparaginase ansB reinvigorated T cell activation, but at the cost of decreased metabolic control of the tumour by STm. This work shows for the first time that T cells are metabolically defective during BCT, but also that this same phenomenon is inexorably tied to intrinsic tumour suppression by the bacterial vector.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)