Yufu Han, Yuanjia Han, Li Wang, Dietrich A Volmer, Yulin Qi
{"title":"热液对中国黄骅凹陷孔店地层碳氢化合物生成和固体沥青层的影响","authors":"Yufu Han, Yuanjia Han, Li Wang, Dietrich A Volmer, Yulin Qi","doi":"10.1021/jasms.4c00403","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrothermal fluid plays a crucial role in the generation and migration of hydrocarbons within sedimentary basins. Herein, we employed bulk analysis and high-resolution mass spectrometry techniques to investigate the transformation dynamics from source rock to hydrocarbons under conditions influenced by magmatic activities in the Kongdian Formation, Huanghua Depression, China. The results revealed that hydrocarbon generation in the Ek<sub>2</sub> shale of the study area was significantly influenced by abnormal heating from hydrothermal fluids. High temperatures associated with these fluids accelerated the conversion of organic matter within source rocks, enhancing hydrocarbon generation rates. Subsequently, the hydrocarbons migrated into fracture networks, where they solidified as low-reflectance solid bitumen, forming trapped fractures of pyrobitumen and authigenic mineral aggregates leached from thermal fluid. High aliphatic fractions were noted in the source rock extracts, while extracts from low-reflectance solid bitumen exhibited higher aromatic fraction. Aliphatic and aromatic compounds in extracts from both the low-reflectance solid bitumen and the source rock exhibited similar maturities and origins. Regarding polar compounds, the compound classes O<sub>1</sub>, O<sub>2</sub>, N<sub>1</sub>O<sub>1</sub>, and N<sub>1</sub>O<sub>2</sub> showed higher abundances in source rock extracts compared to those in low-reflectance solid bitumen, while the S<sub>1</sub> and N<sub>1</sub> classes showed the opposite trend. Thus, fractionation clearly occurs when hydrocarbons expelled from source rocks by thermal fluids solidify into low-reflectance solid bitumen. This unique study provides valuable insights into understanding the fate of hydrocarbons originating from source rocks heated by thermal fluids, and explores the potential for unconventional oil in regions with intense hydrothermal alteration.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"3274-3285"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Hydrothermal Fluids on Hydrocarbon Generation and Solid Bitumen Formation in the Kongdian Formation, Huanghua Depression, China.\",\"authors\":\"Yufu Han, Yuanjia Han, Li Wang, Dietrich A Volmer, Yulin Qi\",\"doi\":\"10.1021/jasms.4c00403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrothermal fluid plays a crucial role in the generation and migration of hydrocarbons within sedimentary basins. Herein, we employed bulk analysis and high-resolution mass spectrometry techniques to investigate the transformation dynamics from source rock to hydrocarbons under conditions influenced by magmatic activities in the Kongdian Formation, Huanghua Depression, China. The results revealed that hydrocarbon generation in the Ek<sub>2</sub> shale of the study area was significantly influenced by abnormal heating from hydrothermal fluids. High temperatures associated with these fluids accelerated the conversion of organic matter within source rocks, enhancing hydrocarbon generation rates. Subsequently, the hydrocarbons migrated into fracture networks, where they solidified as low-reflectance solid bitumen, forming trapped fractures of pyrobitumen and authigenic mineral aggregates leached from thermal fluid. High aliphatic fractions were noted in the source rock extracts, while extracts from low-reflectance solid bitumen exhibited higher aromatic fraction. Aliphatic and aromatic compounds in extracts from both the low-reflectance solid bitumen and the source rock exhibited similar maturities and origins. Regarding polar compounds, the compound classes O<sub>1</sub>, O<sub>2</sub>, N<sub>1</sub>O<sub>1</sub>, and N<sub>1</sub>O<sub>2</sub> showed higher abundances in source rock extracts compared to those in low-reflectance solid bitumen, while the S<sub>1</sub> and N<sub>1</sub> classes showed the opposite trend. Thus, fractionation clearly occurs when hydrocarbons expelled from source rocks by thermal fluids solidify into low-reflectance solid bitumen. This unique study provides valuable insights into understanding the fate of hydrocarbons originating from source rocks heated by thermal fluids, and explores the potential for unconventional oil in regions with intense hydrothermal alteration.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"3274-3285\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00403\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00403","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Impact of Hydrothermal Fluids on Hydrocarbon Generation and Solid Bitumen Formation in the Kongdian Formation, Huanghua Depression, China.
Hydrothermal fluid plays a crucial role in the generation and migration of hydrocarbons within sedimentary basins. Herein, we employed bulk analysis and high-resolution mass spectrometry techniques to investigate the transformation dynamics from source rock to hydrocarbons under conditions influenced by magmatic activities in the Kongdian Formation, Huanghua Depression, China. The results revealed that hydrocarbon generation in the Ek2 shale of the study area was significantly influenced by abnormal heating from hydrothermal fluids. High temperatures associated with these fluids accelerated the conversion of organic matter within source rocks, enhancing hydrocarbon generation rates. Subsequently, the hydrocarbons migrated into fracture networks, where they solidified as low-reflectance solid bitumen, forming trapped fractures of pyrobitumen and authigenic mineral aggregates leached from thermal fluid. High aliphatic fractions were noted in the source rock extracts, while extracts from low-reflectance solid bitumen exhibited higher aromatic fraction. Aliphatic and aromatic compounds in extracts from both the low-reflectance solid bitumen and the source rock exhibited similar maturities and origins. Regarding polar compounds, the compound classes O1, O2, N1O1, and N1O2 showed higher abundances in source rock extracts compared to those in low-reflectance solid bitumen, while the S1 and N1 classes showed the opposite trend. Thus, fractionation clearly occurs when hydrocarbons expelled from source rocks by thermal fluids solidify into low-reflectance solid bitumen. This unique study provides valuable insights into understanding the fate of hydrocarbons originating from source rocks heated by thermal fluids, and explores the potential for unconventional oil in regions with intense hydrothermal alteration.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives