Hadis Amiri, Bahare Shabanpour, Parastoo Pourashouri, Mahboobeh Kashiri
{"title":"使用含海洋生物活性化合物的纳米脂质体制备功能性补充剂粉末。","authors":"Hadis Amiri, Bahare Shabanpour, Parastoo Pourashouri, Mahboobeh Kashiri","doi":"10.1111/1750-3841.17543","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for marine bioactive compounds as therapeutic agents in supplements or functional foods has increased. However, their instability, bitter taste, and potential degradation during digestion have hindered their widespread use. To overcome these problems, a functional supplement powder was produced using the encapsulation technique of nanoliposomes containing shrimp lipid extract, fish oil (FO), and fish protein hydrolysate. Chitosan and whey protein concentrate (WPC) were used to coat the nanoliposomes in mono/bilayer and composite forms, followed by freeze-drying for 72 h. The physicochemical characteristics, nutritional, in vitro release, and sensory evaluation were investigated. The WPC-monolayer treatment exhibited the highest solubility (28.83 mg/100 g), encapsulation efficiency (97.67%), and polyunsaturated fatty acids (PUFAs). Although the mono/bilayer treatments of whey protein showed lower docosahexaenoic acid and eicosapentaenoic acid than FO, they presented a favorable amino acid profile. Compared to acidic stomach conditions, the release in the intestine was higher. Incorporating 1.5 g of the supplement powder per 100 g of milk can meet an individual's daily nutritional needs for essential amino acids and PUFAs. Therefore, encapsulating marine bioactive compounds in liposomal carriers could be a beneficial approach to their direct use as a nutritious powder.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of functional supplement powder using nanoliposome-containing marine bioactive compounds.\",\"authors\":\"Hadis Amiri, Bahare Shabanpour, Parastoo Pourashouri, Mahboobeh Kashiri\",\"doi\":\"10.1111/1750-3841.17543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for marine bioactive compounds as therapeutic agents in supplements or functional foods has increased. However, their instability, bitter taste, and potential degradation during digestion have hindered their widespread use. To overcome these problems, a functional supplement powder was produced using the encapsulation technique of nanoliposomes containing shrimp lipid extract, fish oil (FO), and fish protein hydrolysate. Chitosan and whey protein concentrate (WPC) were used to coat the nanoliposomes in mono/bilayer and composite forms, followed by freeze-drying for 72 h. The physicochemical characteristics, nutritional, in vitro release, and sensory evaluation were investigated. The WPC-monolayer treatment exhibited the highest solubility (28.83 mg/100 g), encapsulation efficiency (97.67%), and polyunsaturated fatty acids (PUFAs). Although the mono/bilayer treatments of whey protein showed lower docosahexaenoic acid and eicosapentaenoic acid than FO, they presented a favorable amino acid profile. Compared to acidic stomach conditions, the release in the intestine was higher. Incorporating 1.5 g of the supplement powder per 100 g of milk can meet an individual's daily nutritional needs for essential amino acids and PUFAs. Therefore, encapsulating marine bioactive compounds in liposomal carriers could be a beneficial approach to their direct use as a nutritious powder.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1750-3841.17543\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17543","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Preparation of functional supplement powder using nanoliposome-containing marine bioactive compounds.
The demand for marine bioactive compounds as therapeutic agents in supplements or functional foods has increased. However, their instability, bitter taste, and potential degradation during digestion have hindered their widespread use. To overcome these problems, a functional supplement powder was produced using the encapsulation technique of nanoliposomes containing shrimp lipid extract, fish oil (FO), and fish protein hydrolysate. Chitosan and whey protein concentrate (WPC) were used to coat the nanoliposomes in mono/bilayer and composite forms, followed by freeze-drying for 72 h. The physicochemical characteristics, nutritional, in vitro release, and sensory evaluation were investigated. The WPC-monolayer treatment exhibited the highest solubility (28.83 mg/100 g), encapsulation efficiency (97.67%), and polyunsaturated fatty acids (PUFAs). Although the mono/bilayer treatments of whey protein showed lower docosahexaenoic acid and eicosapentaenoic acid than FO, they presented a favorable amino acid profile. Compared to acidic stomach conditions, the release in the intestine was higher. Incorporating 1.5 g of the supplement powder per 100 g of milk can meet an individual's daily nutritional needs for essential amino acids and PUFAs. Therefore, encapsulating marine bioactive compounds in liposomal carriers could be a beneficial approach to their direct use as a nutritious powder.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.