色甘酸钠通过靶向Keap1蛋白激活Nrf2信号发挥抗肺纤维化作用。

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaofeng Liu, Yuwei Huang, Xianchen Zhao, Yingjun Guan, Yanchun Li, Lei Yuan, Chuncheng Wang, Chao Ma, Enlong Ma
{"title":"色甘酸钠通过靶向Keap1蛋白激活Nrf2信号发挥抗肺纤维化作用。","authors":"Xiaofeng Liu, Yuwei Huang, Xianchen Zhao, Yingjun Guan, Yanchun Li, Lei Yuan, Chuncheng Wang, Chao Ma, Enlong Ma","doi":"10.1016/j.bioorg.2024.107961","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress has been confirmed to be closely related to the occurrence and development of pulmonary fibrosis (PF). The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2 related factor 2 (Nrf2) pathway plays a key role in maintaining cellular redox homeostasis. Targeting the Keap1 protein to activate Nrf2 could be a promising strategy for treating PF. Virtual screening via a pharmacophore model was used to screen candidate compounds with potential Keap1 binding ability from the U.S. Food and Drug Administration (FDA) database. The results revealed that sodium cromoglycate (Cro) has the highest fit value and absolute docking score and could improve the thermal stability of the Keap1 protein in a CETSA, confirming that Cro could bind to the Keap1 protein directly. Further studies revealed that Cro promoted Nrf2 translocation into the nucleus, relieved oxidative stress, prevented the epithelial-mesenchymal transition (EMT) process and upregulated fibrosis markers in TGF-β1-induced A549 cells, indicating that Cro has anti-pulmonary fibrosis activity in an in vitro lung fibrosis model. Moreover, in a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, Cro administration improved pulmonary fibrosis, activated Nrf2 signaling, and blocked the EMT process. In summary, these results demonstrated that Cro could activate Nrf2 signaling to clear reactive oxygen species (ROS) by directly binding to Keap1 and alleviate pulmonary fibrosis by blocking the progression of EMT both in vitro and in vivo.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107961"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium cromoglycate exerts anti-pulmonary fibrosis effects by targeting the Keap1 protein to activate Nrf2 signaling.\",\"authors\":\"Xiaofeng Liu, Yuwei Huang, Xianchen Zhao, Yingjun Guan, Yanchun Li, Lei Yuan, Chuncheng Wang, Chao Ma, Enlong Ma\",\"doi\":\"10.1016/j.bioorg.2024.107961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress has been confirmed to be closely related to the occurrence and development of pulmonary fibrosis (PF). The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2 related factor 2 (Nrf2) pathway plays a key role in maintaining cellular redox homeostasis. Targeting the Keap1 protein to activate Nrf2 could be a promising strategy for treating PF. Virtual screening via a pharmacophore model was used to screen candidate compounds with potential Keap1 binding ability from the U.S. Food and Drug Administration (FDA) database. The results revealed that sodium cromoglycate (Cro) has the highest fit value and absolute docking score and could improve the thermal stability of the Keap1 protein in a CETSA, confirming that Cro could bind to the Keap1 protein directly. Further studies revealed that Cro promoted Nrf2 translocation into the nucleus, relieved oxidative stress, prevented the epithelial-mesenchymal transition (EMT) process and upregulated fibrosis markers in TGF-β1-induced A549 cells, indicating that Cro has anti-pulmonary fibrosis activity in an in vitro lung fibrosis model. Moreover, in a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, Cro administration improved pulmonary fibrosis, activated Nrf2 signaling, and blocked the EMT process. In summary, these results demonstrated that Cro could activate Nrf2 signaling to clear reactive oxygen species (ROS) by directly binding to Keap1 and alleviate pulmonary fibrosis by blocking the progression of EMT both in vitro and in vivo.</p>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"153 \",\"pages\":\"107961\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bioorg.2024.107961\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107961","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氧化应激已被证实与肺纤维化(PF)的发生和发展密切相关。Kelch-like ECH-associated protein 1 (Keap1) -nuclear factor erythroid-2 related factor 2 (Nrf2)通路在维持细胞氧化还原平衡方面发挥着关键作用。以 Keap1 蛋白为靶点激活 Nrf2 可能是治疗 PF 的一种有前途的策略。研究人员通过药理模型进行虚拟筛选,从美国食品药品管理局(FDA)数据库中筛选出具有潜在Keap1结合能力的候选化合物。结果显示,色甘酸钠(Cro)的拟合值和绝对对接得分最高,并能提高 Keap1 蛋白在 CETSA 中的热稳定性,证实 Cro 能直接与 Keap1 蛋白结合。进一步的研究发现,在TGF-β1诱导的A549细胞中,Cro能促进Nrf2转位至细胞核,缓解氧化应激,阻止上皮-间质转化(EMT)过程,并上调纤维化标志物,表明Cro在体外肺纤维化模型中具有抗肺纤维化活性。此外,在博莱霉素(BLM)诱导的小鼠肺纤维化模型中,服用 Cro 可改善肺纤维化,激活 Nrf2 信号转导,阻断 EMT 过程。总之,这些结果表明,Cro能通过直接与Keap1结合激活Nrf2信号以清除活性氧(ROS),并通过在体外和体内阻断EMT的进展来缓解肺纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sodium cromoglycate exerts anti-pulmonary fibrosis effects by targeting the Keap1 protein to activate Nrf2 signaling.

Oxidative stress has been confirmed to be closely related to the occurrence and development of pulmonary fibrosis (PF). The Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2 related factor 2 (Nrf2) pathway plays a key role in maintaining cellular redox homeostasis. Targeting the Keap1 protein to activate Nrf2 could be a promising strategy for treating PF. Virtual screening via a pharmacophore model was used to screen candidate compounds with potential Keap1 binding ability from the U.S. Food and Drug Administration (FDA) database. The results revealed that sodium cromoglycate (Cro) has the highest fit value and absolute docking score and could improve the thermal stability of the Keap1 protein in a CETSA, confirming that Cro could bind to the Keap1 protein directly. Further studies revealed that Cro promoted Nrf2 translocation into the nucleus, relieved oxidative stress, prevented the epithelial-mesenchymal transition (EMT) process and upregulated fibrosis markers in TGF-β1-induced A549 cells, indicating that Cro has anti-pulmonary fibrosis activity in an in vitro lung fibrosis model. Moreover, in a mouse model of bleomycin (BLM)-induced pulmonary fibrosis, Cro administration improved pulmonary fibrosis, activated Nrf2 signaling, and blocked the EMT process. In summary, these results demonstrated that Cro could activate Nrf2 signaling to clear reactive oxygen species (ROS) by directly binding to Keap1 and alleviate pulmonary fibrosis by blocking the progression of EMT both in vitro and in vivo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信