Yining Hu, David Rey, Reza Mohajerpoor, Meead Saberi
{"title":"优化连续流动交叉口的交通信号控制:以实践模型为基准","authors":"Yining Hu, David Rey, Reza Mohajerpoor, Meead Saberi","doi":"10.1049/itr2.12559","DOIUrl":null,"url":null,"abstract":"<p>Continuous-flow intersections (CFI), also known as displaced left-turn (DLT) intersections, aim to improve the efficiency and safety of traffic junctions. A CFI introduces additional cross-over intersections upstream of the main intersection to split the left-turn flow from the through movement before it arrives at the main intersection which decreases the number of conflict points between left-turn and through movements. This study develops and examine a two-step optimization model for CFI traffic signal control design and demonstrates its performance across more than 300 different travel demand scenarios. The proposed model is compared against a state-of-practice CFI signal control model as a benchmark. Microsimulation results suggest that the proposed model reduces average delay by 17% and average queue length by 32% for a full CFI compared with the benchmark signal control model.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 11","pages":"2152-2165"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12559","citationCount":"0","resultStr":"{\"title\":\"Optimizing traffic signal control for continuous-flow intersections: Benchmarking against a state-of-practice model\",\"authors\":\"Yining Hu, David Rey, Reza Mohajerpoor, Meead Saberi\",\"doi\":\"10.1049/itr2.12559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Continuous-flow intersections (CFI), also known as displaced left-turn (DLT) intersections, aim to improve the efficiency and safety of traffic junctions. A CFI introduces additional cross-over intersections upstream of the main intersection to split the left-turn flow from the through movement before it arrives at the main intersection which decreases the number of conflict points between left-turn and through movements. This study develops and examine a two-step optimization model for CFI traffic signal control design and demonstrates its performance across more than 300 different travel demand scenarios. The proposed model is compared against a state-of-practice CFI signal control model as a benchmark. Microsimulation results suggest that the proposed model reduces average delay by 17% and average queue length by 32% for a full CFI compared with the benchmark signal control model.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 11\",\"pages\":\"2152-2165\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12559\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12559\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12559","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimizing traffic signal control for continuous-flow intersections: Benchmarking against a state-of-practice model
Continuous-flow intersections (CFI), also known as displaced left-turn (DLT) intersections, aim to improve the efficiency and safety of traffic junctions. A CFI introduces additional cross-over intersections upstream of the main intersection to split the left-turn flow from the through movement before it arrives at the main intersection which decreases the number of conflict points between left-turn and through movements. This study develops and examine a two-step optimization model for CFI traffic signal control design and demonstrates its performance across more than 300 different travel demand scenarios. The proposed model is compared against a state-of-practice CFI signal control model as a benchmark. Microsimulation results suggest that the proposed model reduces average delay by 17% and average queue length by 32% for a full CFI compared with the benchmark signal control model.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf