Yeongwoo Son, Stanislav Udovenko, Sai Venkatra Gayathri Ayyagari, John Barber, Kae Nakamura, Christina M. Rost, Nasim Alem, Susan Trolier-McKinstry
{"title":"极化稳定性及其对高熵过氧化物薄膜电致效应的影响","authors":"Yeongwoo Son, Stanislav Udovenko, Sai Venkatra Gayathri Ayyagari, John Barber, Kae Nakamura, Christina M. Rost, Nasim Alem, Susan Trolier-McKinstry","doi":"10.1016/j.actamat.2024.120576","DOIUrl":null,"url":null,"abstract":"In principle, the configurational entropy inherent in High Entropy Oxides (HEOs) could facilitate large electrocaloric effects (ECE) by promoting polar entropy. In this study, it is demonstrated that the time stability of the remanent polarization can be tuned via B-site disorder in High Entropy Perovskite Oxides (HEPO) films. Eight HEPO powders were synthesized; the propensity for perovskite phase formation was consistent with the Goldschmidt tolerance factor. While entropic contributions stabilize HEPO, they do not fully predict the stabilization. Relative dielectric permittivities between 2000 to 600 can be achieved for the B-site disordered HEPO films with loss tangents below 6% at room temperature. All films showed similar polarization-electric field loops with maximum polarization up to 48 <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">&#x3BC;</mi><mi mathvariant=\"normal\" is=\"true\">C</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -796.9 1326 1096.9\" width=\"3.08ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,0)\"><use xlink:href=\"#MJMAIN-43\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\" mathvariant=\"normal\">C</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">C</mi></mrow></math></script></span> cm<sup>−2</sup> and a remanent polarization <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">&#x2265;</mo></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.466ex;\" viewbox=\"0 -697.5 778.5 898.2\" width=\"1.808ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2265\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">≥</mo></math></span></span><script type=\"math/mml\"><math><mo is=\"true\">≥</mo></math></script></span> 20 <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">&#x3BC;</mi><mi mathvariant=\"normal\" is=\"true\">C</mi></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.548ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -796.9 1326 1096.9\" width=\"3.08ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,0)\"><use xlink:href=\"#MJMAIN-43\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">μ</mi><mi is=\"true\" mathvariant=\"normal\">C</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">μ</mi><mi mathvariant=\"normal\" is=\"true\">C</mi></mrow></math></script></span> cm<sup>−2</sup> measured at room temperature with applied electric field of 1100 kV cm<sup>−1</sup> at a frequency of 10 kHz. The temperature of the dielectric maximum (T<sub>max</sub>) increased from 105°C to 225°C with increasing average ion size on the B-site. Polarization stability of the HEPO films was investigated using Positive-Up-Negative-Down (PUND) measurements. It was found that in some HEPO films, 24% of the remanent polarization decayed within 2 s. By employing the time stability of the remanent polarization, enhanced electrocaloric effects of HEPO film was predicted to be 14.9 K and 11.5 J Kg<sup>−1</sup> K<sup>−1</sup> at an applied field of 1120 kV cm<sup>−1</sup>, for electrocaloric temperature change and entropy change, respectively.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"117 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization Stability and Its Influence on Electrocaloric Effects of High Entropy Perovskite Oxide Films\",\"authors\":\"Yeongwoo Son, Stanislav Udovenko, Sai Venkatra Gayathri Ayyagari, John Barber, Kae Nakamura, Christina M. Rost, Nasim Alem, Susan Trolier-McKinstry\",\"doi\":\"10.1016/j.actamat.2024.120576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In principle, the configurational entropy inherent in High Entropy Oxides (HEOs) could facilitate large electrocaloric effects (ECE) by promoting polar entropy. In this study, it is demonstrated that the time stability of the remanent polarization can be tuned via B-site disorder in High Entropy Perovskite Oxides (HEPO) films. Eight HEPO powders were synthesized; the propensity for perovskite phase formation was consistent with the Goldschmidt tolerance factor. While entropic contributions stabilize HEPO, they do not fully predict the stabilization. Relative dielectric permittivities between 2000 to 600 can be achieved for the B-site disordered HEPO films with loss tangents below 6% at room temperature. All films showed similar polarization-electric field loops with maximum polarization up to 48 <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">&#x3BC;</mi><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">C</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.548ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.697ex;\\\" viewbox=\\\"0 -796.9 1326 1096.9\\\" width=\\\"3.08ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3BC\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(603,0)\\\"><use xlink:href=\\\"#MJMAIN-43\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">μ</mi><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">C</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">μ</mi><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">C</mi></mrow></math></script></span> cm<sup>−2</sup> and a remanent polarization <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo is=\\\"true\\\">&#x2265;</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.086ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.466ex;\\\" viewbox=\\\"0 -697.5 778.5 898.2\\\" width=\\\"1.808ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-2265\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo is=\\\"true\\\">≥</mo></math></span></span><script type=\\\"math/mml\\\"><math><mo is=\\\"true\\\">≥</mo></math></script></span> 20 <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">&#x3BC;</mi><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">C</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.548ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.697ex;\\\" viewbox=\\\"0 -796.9 1326 1096.9\\\" width=\\\"3.08ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3BC\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(603,0)\\\"><use xlink:href=\\\"#MJMAIN-43\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">μ</mi><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">C</mi></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi is=\\\"true\\\">μ</mi><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">C</mi></mrow></math></script></span> cm<sup>−2</sup> measured at room temperature with applied electric field of 1100 kV cm<sup>−1</sup> at a frequency of 10 kHz. The temperature of the dielectric maximum (T<sub>max</sub>) increased from 105°C to 225°C with increasing average ion size on the B-site. Polarization stability of the HEPO films was investigated using Positive-Up-Negative-Down (PUND) measurements. It was found that in some HEPO films, 24% of the remanent polarization decayed within 2 s. By employing the time stability of the remanent polarization, enhanced electrocaloric effects of HEPO film was predicted to be 14.9 K and 11.5 J Kg<sup>−1</sup> K<sup>−1</sup> at an applied field of 1120 kV cm<sup>−1</sup>, for electrocaloric temperature change and entropy change, respectively.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2024.120576\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120576","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polarization Stability and Its Influence on Electrocaloric Effects of High Entropy Perovskite Oxide Films
In principle, the configurational entropy inherent in High Entropy Oxides (HEOs) could facilitate large electrocaloric effects (ECE) by promoting polar entropy. In this study, it is demonstrated that the time stability of the remanent polarization can be tuned via B-site disorder in High Entropy Perovskite Oxides (HEPO) films. Eight HEPO powders were synthesized; the propensity for perovskite phase formation was consistent with the Goldschmidt tolerance factor. While entropic contributions stabilize HEPO, they do not fully predict the stabilization. Relative dielectric permittivities between 2000 to 600 can be achieved for the B-site disordered HEPO films with loss tangents below 6% at room temperature. All films showed similar polarization-electric field loops with maximum polarization up to 48 cm−2 and a remanent polarization 20 cm−2 measured at room temperature with applied electric field of 1100 kV cm−1 at a frequency of 10 kHz. The temperature of the dielectric maximum (Tmax) increased from 105°C to 225°C with increasing average ion size on the B-site. Polarization stability of the HEPO films was investigated using Positive-Up-Negative-Down (PUND) measurements. It was found that in some HEPO films, 24% of the remanent polarization decayed within 2 s. By employing the time stability of the remanent polarization, enhanced electrocaloric effects of HEPO film was predicted to be 14.9 K and 11.5 J Kg−1 K−1 at an applied field of 1120 kV cm−1, for electrocaloric temperature change and entropy change, respectively.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.