Sanjay Basu, Dean Schillinger, Sadiq Y. Patel, Joseph Rigdon
{"title":"模拟 A/B 测试与 SMART 设计,以 LLM 驱动的患者参与弥补预防性保健差距","authors":"Sanjay Basu, Dean Schillinger, Sadiq Y. Patel, Joseph Rigdon","doi":"10.1038/s41746-024-01330-2","DOIUrl":null,"url":null,"abstract":"Population health initiatives often rely on cold outreach to close gaps in preventive care, such as overdue screenings or immunizations. Tailoring messages to diverse patient populations remains challenging, as traditional A/B testing requires large sample sizes to test only two alternative messages. With increasing availability of large language models (LLMs), programs can utilize tiered testing among both LLM and manual human agents, presenting the dilemma of identifying which patients need different levels of human support to cost-effectively engage large populations. Using microsimulations, we compared both the statistical power and false positive rates of A/B testing and Sequential Multiple Assignment Randomized Trials (SMART) for developing personalized communications across multiple effect sizes and sample sizes. SMART showed better cost-effectiveness and net benefit across all scenarios, but superior power for detecting heterogeneous treatment effects (HTEs) only in later randomization stages, when populations were more homogeneous and subtle differences drove engagement differences.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-8"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01330-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Simulating A/B testing versus SMART designs for LLM-driven patient engagement to close preventive care gaps\",\"authors\":\"Sanjay Basu, Dean Schillinger, Sadiq Y. Patel, Joseph Rigdon\",\"doi\":\"10.1038/s41746-024-01330-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Population health initiatives often rely on cold outreach to close gaps in preventive care, such as overdue screenings or immunizations. Tailoring messages to diverse patient populations remains challenging, as traditional A/B testing requires large sample sizes to test only two alternative messages. With increasing availability of large language models (LLMs), programs can utilize tiered testing among both LLM and manual human agents, presenting the dilemma of identifying which patients need different levels of human support to cost-effectively engage large populations. Using microsimulations, we compared both the statistical power and false positive rates of A/B testing and Sequential Multiple Assignment Randomized Trials (SMART) for developing personalized communications across multiple effect sizes and sample sizes. SMART showed better cost-effectiveness and net benefit across all scenarios, but superior power for detecting heterogeneous treatment effects (HTEs) only in later randomization stages, when populations were more homogeneous and subtle differences drove engagement differences.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41746-024-01330-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01330-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01330-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Simulating A/B testing versus SMART designs for LLM-driven patient engagement to close preventive care gaps
Population health initiatives often rely on cold outreach to close gaps in preventive care, such as overdue screenings or immunizations. Tailoring messages to diverse patient populations remains challenging, as traditional A/B testing requires large sample sizes to test only two alternative messages. With increasing availability of large language models (LLMs), programs can utilize tiered testing among both LLM and manual human agents, presenting the dilemma of identifying which patients need different levels of human support to cost-effectively engage large populations. Using microsimulations, we compared both the statistical power and false positive rates of A/B testing and Sequential Multiple Assignment Randomized Trials (SMART) for developing personalized communications across multiple effect sizes and sample sizes. SMART showed better cost-effectiveness and net benefit across all scenarios, but superior power for detecting heterogeneous treatment effects (HTEs) only in later randomization stages, when populations were more homogeneous and subtle differences drove engagement differences.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.