通过属性标签概率进行可控动漫图像编辑

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Zhenghao Song, Haoran Mo, Chengying Gao
{"title":"通过属性标签概率进行可控动漫图像编辑","authors":"Zhenghao Song,&nbsp;Haoran Mo,&nbsp;Chengying Gao","doi":"10.1111/cgf.15245","DOIUrl":null,"url":null,"abstract":"<p>Editing anime images via probabilities of attribute tags allows controlling the degree of the manipulation in an intuitive and convenient manner. Existing methods fall short in the progressive modification and preservation of unintended regions in the input image. We propose a controllable anime image editing framework based on adjusting the tag probabilities, in which a probability encoding network (PEN) is developed to encode the probabilities into features that capture continuous characteristic of the probabilities. Thus, the encoded features are able to direct the generative process of a pre-trained diffusion model and facilitate the linear manipulation. We also introduce a local editing module that automatically identifies the intended regions and constrains the edits to be applied to those regions only, which preserves the others unchanged. Comprehensive comparisons with existing methods indicate the effectiveness of our framework in both one-shot and linear editing modes. Results in additional applications further demonstrate the generalization ability of our approach.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controllable Anime Image Editing via Probability of Attribute Tags\",\"authors\":\"Zhenghao Song,&nbsp;Haoran Mo,&nbsp;Chengying Gao\",\"doi\":\"10.1111/cgf.15245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Editing anime images via probabilities of attribute tags allows controlling the degree of the manipulation in an intuitive and convenient manner. Existing methods fall short in the progressive modification and preservation of unintended regions in the input image. We propose a controllable anime image editing framework based on adjusting the tag probabilities, in which a probability encoding network (PEN) is developed to encode the probabilities into features that capture continuous characteristic of the probabilities. Thus, the encoded features are able to direct the generative process of a pre-trained diffusion model and facilitate the linear manipulation. We also introduce a local editing module that automatically identifies the intended regions and constrains the edits to be applied to those regions only, which preserves the others unchanged. Comprehensive comparisons with existing methods indicate the effectiveness of our framework in both one-shot and linear editing modes. Results in additional applications further demonstrate the generalization ability of our approach.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15245\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15245","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

通过属性标签的概率来编辑动漫图像,可以直观方便地控制操作的程度。现有方法在逐步修改和保留输入图像中的非预期区域方面存在不足。我们提出了一个基于调整标签概率的可控动漫图像编辑框架,其中开发了一个概率编码网络(PEN),将概率编码为捕捉概率连续特征的特征。因此,编码后的特征能够指导预先训练好的扩散模型的生成过程,并促进线性操作。我们还引入了一个局部编辑模块,它能自动识别目标区域,并限制只对这些区域进行编辑,而其他区域则保持不变。与现有方法的综合比较表明,我们的框架在单次编辑和线性编辑模式下都很有效。其他应用中的结果进一步证明了我们方法的通用能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controllable Anime Image Editing via Probability of Attribute Tags

Editing anime images via probabilities of attribute tags allows controlling the degree of the manipulation in an intuitive and convenient manner. Existing methods fall short in the progressive modification and preservation of unintended regions in the input image. We propose a controllable anime image editing framework based on adjusting the tag probabilities, in which a probability encoding network (PEN) is developed to encode the probabilities into features that capture continuous characteristic of the probabilities. Thus, the encoded features are able to direct the generative process of a pre-trained diffusion model and facilitate the linear manipulation. We also introduce a local editing module that automatically identifies the intended regions and constrains the edits to be applied to those regions only, which preserves the others unchanged. Comprehensive comparisons with existing methods indicate the effectiveness of our framework in both one-shot and linear editing modes. Results in additional applications further demonstrate the generalization ability of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信