优化均值场自旋玻璃的严格 Lipschitz 硬度

IF 3.1 1区 数学 Q1 MATHEMATICS
Brice Huang, Mark Sellke
{"title":"优化均值场自旋玻璃的严格 Lipschitz 硬度","authors":"Brice Huang,&nbsp;Mark Sellke","doi":"10.1002/cpa.22222","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of algorithmically optimizing the Hamiltonian <span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>N</mi>\n </msub>\n <annotation>$H_N$</annotation>\n </semantics></math> of a spherical or Ising mixed <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-spin glass. The maximum asymptotic value <span></span><math>\n <semantics>\n <mi>OPT</mi>\n <annotation>${\\mathsf {OPT}}$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>N</mi>\n </msub>\n <mo>/</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$H_N/N$</annotation>\n </semantics></math> is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing (AMP) algorithms efficiently optimize <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>N</mi>\n </msub>\n <mo>/</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$H_N/N$</annotation>\n </semantics></math> up to a value <span></span><math>\n <semantics>\n <mi>ALG</mi>\n <annotation>${\\mathsf {ALG}}$</annotation>\n </semantics></math> given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a <i>no overlap gap</i> property (OGP). However, <span></span><math>\n <semantics>\n <mrow>\n <mi>ALG</mi>\n <mo>&lt;</mo>\n <mi>OPT</mi>\n </mrow>\n <annotation>${\\mathsf {ALG}}&amp;lt; {\\mathsf {OPT}}$</annotation>\n </semantics></math> can also occur, and no efficient algorithm producing an objective value exceeding <span></span><math>\n <semantics>\n <mi>ALG</mi>\n <annotation>${\\mathsf {ALG}}$</annotation>\n </semantics></math> is known. We prove that for mixed even <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-spin models, no algorithm satisfying an <i>overlap concentration</i> property can produce an objective larger than <span></span><math>\n <semantics>\n <mi>ALG</mi>\n <annotation>${\\mathsf {ALG}}$</annotation>\n </semantics></math> with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of <span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>N</mi>\n </msub>\n <annotation>$H_N$</annotation>\n </semantics></math>. It encompasses natural formulations of gradient descent, AMP, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving <span></span><math>\n <semantics>\n <mi>ALG</mi>\n <annotation>${\\mathsf {ALG}}$</annotation>\n </semantics></math> mentioned above. To prove this result, we substantially generalize the OGP framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 1","pages":"60-119"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tight Lipschitz hardness for optimizing mean field spin glasses\",\"authors\":\"Brice Huang,&nbsp;Mark Sellke\",\"doi\":\"10.1002/cpa.22222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem of algorithmically optimizing the Hamiltonian <span></span><math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mi>N</mi>\\n </msub>\\n <annotation>$H_N$</annotation>\\n </semantics></math> of a spherical or Ising mixed <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-spin glass. The maximum asymptotic value <span></span><math>\\n <semantics>\\n <mi>OPT</mi>\\n <annotation>${\\\\mathsf {OPT}}$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mi>N</mi>\\n </msub>\\n <mo>/</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$H_N/N$</annotation>\\n </semantics></math> is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing (AMP) algorithms efficiently optimize <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mi>N</mi>\\n </msub>\\n <mo>/</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$H_N/N$</annotation>\\n </semantics></math> up to a value <span></span><math>\\n <semantics>\\n <mi>ALG</mi>\\n <annotation>${\\\\mathsf {ALG}}$</annotation>\\n </semantics></math> given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a <i>no overlap gap</i> property (OGP). However, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ALG</mi>\\n <mo>&lt;</mo>\\n <mi>OPT</mi>\\n </mrow>\\n <annotation>${\\\\mathsf {ALG}}&amp;lt; {\\\\mathsf {OPT}}$</annotation>\\n </semantics></math> can also occur, and no efficient algorithm producing an objective value exceeding <span></span><math>\\n <semantics>\\n <mi>ALG</mi>\\n <annotation>${\\\\mathsf {ALG}}$</annotation>\\n </semantics></math> is known. We prove that for mixed even <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-spin models, no algorithm satisfying an <i>overlap concentration</i> property can produce an objective larger than <span></span><math>\\n <semantics>\\n <mi>ALG</mi>\\n <annotation>${\\\\mathsf {ALG}}$</annotation>\\n </semantics></math> with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mi>N</mi>\\n </msub>\\n <annotation>$H_N$</annotation>\\n </semantics></math>. It encompasses natural formulations of gradient descent, AMP, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving <span></span><math>\\n <semantics>\\n <mi>ALG</mi>\\n <annotation>${\\\\mathsf {ALG}}$</annotation>\\n </semantics></math> mentioned above. To prove this result, we substantially generalize the OGP framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"78 1\",\"pages\":\"60-119\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22222\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22222","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了球面或伊辛混合 p $p$ -自旋玻璃的哈密顿H N $H_N$ 的算法优化问题。H N / N $H_N/N$ 的最大渐近值 OPT ${\mathsf {OPT}}$ 是由一个称为帕里西公式的变分原理表征的。最近开发的近似消息传递(AMP)算法可以有效优化 H N / N $H_N/N$ 达到扩展帕里西公式给出的值 ALG ${\mathsf {ALG}}$,该值在更大的功能阶参数空间上最小化。对于表现出无重叠间隙特性(OGP)的自旋玻璃来说,这两个目标是相等的。然而,ALG < OPT ${\mathsf {ALG}}&lt; {\mathsf {OPT}}$ 也可能出现,而且目前还不知道哪种高效算法能产生超过 ALG ${\mathsf {ALG}}$ 的目标值。我们证明,对于混合偶数 p $p$ -自旋模型,没有一种满足重叠集中特性的算法能以不可忽略的概率产生大于 ALG ${\mathsf {ALG}}$的目标值。这一特性适用于所有对 H N $H_N$ 的无序系数具有适当 Lipschitz 依赖性的算法。它包括梯度下降、AMP 和朗格文动力学在有界时间内运行的自然公式,尤其包括上述实现 ALG ${mathsf {ALG}}$的算法。为了证明这一结果,我们将 Gamarnik 和 Sudan 引入的 OGP 框架大幅推广到任意超对称禁止解结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight Lipschitz hardness for optimizing mean field spin glasses

We study the problem of algorithmically optimizing the Hamiltonian H N $H_N$ of a spherical or Ising mixed p $p$ -spin glass. The maximum asymptotic value OPT ${\mathsf {OPT}}$ of H N / N $H_N/N$ is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing (AMP) algorithms efficiently optimize H N / N $H_N/N$ up to a value ALG ${\mathsf {ALG}}$ given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a no overlap gap property (OGP). However, ALG < OPT ${\mathsf {ALG}}&lt; {\mathsf {OPT}}$ can also occur, and no efficient algorithm producing an objective value exceeding ALG ${\mathsf {ALG}}$ is known. We prove that for mixed even p $p$ -spin models, no algorithm satisfying an overlap concentration property can produce an objective larger than ALG ${\mathsf {ALG}}$ with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of H N $H_N$ . It encompasses natural formulations of gradient descent, AMP, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving ALG ${\mathsf {ALG}}$ mentioned above. To prove this result, we substantially generalize the OGP framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信