TempDiff:增强潜在扩散中的时间感知,实现真实世界的视频超分辨率

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Q. Jiang, Q.L. Wang, L.H. Chi, X.H. Chen, Q.Y. Zhang, R. Zhou, Z.Q. Deng, J.S. Deng, B.B. Tang, S.H. Lv, J. Liu
{"title":"TempDiff:增强潜在扩散中的时间感知,实现真实世界的视频超分辨率","authors":"Q. Jiang,&nbsp;Q.L. Wang,&nbsp;L.H. Chi,&nbsp;X.H. Chen,&nbsp;Q.Y. Zhang,&nbsp;R. Zhou,&nbsp;Z.Q. Deng,&nbsp;J.S. Deng,&nbsp;B.B. Tang,&nbsp;S.H. Lv,&nbsp;J. Liu","doi":"10.1111/cgf.15211","DOIUrl":null,"url":null,"abstract":"<p>Latent diffusion models (LDMs) have demonstrated remarkable success in generative modeling. It is promising to leverage the potential of diffusion priors to enhance performance in image and video tasks. However, applying LDMs to video super-resolution (VSR) presents significant challenges due to the high demands for realistic details and temporal consistency in generated videos, exacerbated by the inherent stochasticity in the diffusion process. In this work, we propose a novel diffusion-based framework, Temporal-awareness Latent Diffusion Model (TempDiff), specifically designed for real-world video super-resolution, where degradations are diverse and complex. TempDiff harnesses the powerful generative prior of a pre-trained diffusion model and enhances temporal awareness through the following mechanisms: 1) Incorporating temporal layers into the denoising U-Net and VAE-Decoder, and fine-tuning these added modules to maintain temporal coherency; 2) Estimating optical flow guidance using a pre-trained flow net for latent optimization and propagation across video sequences, ensuring overall stability in the generated high-quality video. Extensive experiments demonstrate that TempDiff achieves compelling results, outperforming state-of-the-art methods on both synthetic and real-world VSR benchmark datasets. Code will be available at https://github.com/jiangqin567/TempDiff</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TempDiff: Enhancing Temporal-awareness in Latent Diffusion for Real-World Video Super-Resolution\",\"authors\":\"Q. Jiang,&nbsp;Q.L. Wang,&nbsp;L.H. Chi,&nbsp;X.H. Chen,&nbsp;Q.Y. Zhang,&nbsp;R. Zhou,&nbsp;Z.Q. Deng,&nbsp;J.S. Deng,&nbsp;B.B. Tang,&nbsp;S.H. Lv,&nbsp;J. Liu\",\"doi\":\"10.1111/cgf.15211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Latent diffusion models (LDMs) have demonstrated remarkable success in generative modeling. It is promising to leverage the potential of diffusion priors to enhance performance in image and video tasks. However, applying LDMs to video super-resolution (VSR) presents significant challenges due to the high demands for realistic details and temporal consistency in generated videos, exacerbated by the inherent stochasticity in the diffusion process. In this work, we propose a novel diffusion-based framework, Temporal-awareness Latent Diffusion Model (TempDiff), specifically designed for real-world video super-resolution, where degradations are diverse and complex. TempDiff harnesses the powerful generative prior of a pre-trained diffusion model and enhances temporal awareness through the following mechanisms: 1) Incorporating temporal layers into the denoising U-Net and VAE-Decoder, and fine-tuning these added modules to maintain temporal coherency; 2) Estimating optical flow guidance using a pre-trained flow net for latent optimization and propagation across video sequences, ensuring overall stability in the generated high-quality video. Extensive experiments demonstrate that TempDiff achieves compelling results, outperforming state-of-the-art methods on both synthetic and real-world VSR benchmark datasets. Code will be available at https://github.com/jiangqin567/TempDiff</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15211\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15211","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

潜在扩散模型(LDM)在生成模型中取得了显著的成功。利用扩散先验的潜力来提高图像和视频任务的性能是大有可为的。然而,将 LDM 应用于视频超分辨率(VSR)却面临着巨大的挑战,因为生成的视频对真实细节和时间一致性的要求很高,而扩散过程中固有的随机性又加剧了这一挑战。在这项工作中,我们提出了一种新颖的基于扩散的框架--时态感知潜在扩散模型(TempDiff),该框架专为真实世界视频超分辨率而设计,在真实世界中,降解是多样而复杂的。TempDiff 利用预先训练好的扩散模型的强大先验生成功能,通过以下机制增强时间感知能力:1)在去噪 U-Net 和 VAE-Decoder 中加入时间层,并对这些新增模块进行微调,以保持时间一致性;2)使用预先训练好的流网估算光流引导,以进行潜优化和跨视频序列传播,确保生成的高质量视频的整体稳定性。广泛的实验表明,TempDiff 取得了令人瞩目的成果,在合成和实际 VSR 基准数据集上的表现均优于最先进的方法。代码见 https://github.com/jiangqin567/TempDiff
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TempDiff: Enhancing Temporal-awareness in Latent Diffusion for Real-World Video Super-Resolution

Latent diffusion models (LDMs) have demonstrated remarkable success in generative modeling. It is promising to leverage the potential of diffusion priors to enhance performance in image and video tasks. However, applying LDMs to video super-resolution (VSR) presents significant challenges due to the high demands for realistic details and temporal consistency in generated videos, exacerbated by the inherent stochasticity in the diffusion process. In this work, we propose a novel diffusion-based framework, Temporal-awareness Latent Diffusion Model (TempDiff), specifically designed for real-world video super-resolution, where degradations are diverse and complex. TempDiff harnesses the powerful generative prior of a pre-trained diffusion model and enhances temporal awareness through the following mechanisms: 1) Incorporating temporal layers into the denoising U-Net and VAE-Decoder, and fine-tuning these added modules to maintain temporal coherency; 2) Estimating optical flow guidance using a pre-trained flow net for latent optimization and propagation across video sequences, ensuring overall stability in the generated high-quality video. Extensive experiments demonstrate that TempDiff achieves compelling results, outperforming state-of-the-art methods on both synthetic and real-world VSR benchmark datasets. Code will be available at https://github.com/jiangqin567/TempDiff

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信