Bo Li , Hua Liu , Qiao Zhang , Chuanguo Chai , Jie Wang , Jialing Yang , Xianfeng Yang
{"title":"用金属条加固的可变截面空心 BCC 网格的耐撞性和刚度改进","authors":"Bo Li , Hua Liu , Qiao Zhang , Chuanguo Chai , Jie Wang , Jialing Yang , Xianfeng Yang","doi":"10.1016/j.ast.2024.109732","DOIUrl":null,"url":null,"abstract":"<div><div>The ultra-lightweight structures with high mechanical properties and energy absorption behaviors are focused on the innovation structural design. The design strategy of implementing novel unit cells within architecture materials such as lattice materials enables the attainment of unparalleled combinations of mechanical properties and functionalities while minimizing weight. The most common method to design light-weight lattice materials is optimizing the geometric configurations of the unit cells. However, changing the geometric boundary of lattice structures can also be a good solution to improve the mechanical characteristics and energy absorption behaviors of the lattice materials. In this work, a novel variable cross-section hollow (VCH) lattice was established to improve the energy absorption capacity. By adding metal strips on the edge of the VCH lattices, a new reinforced variable cross-section hollow (RVCH) lattice with metal strips was developed to further enhance the stiffness and energy absorption capacity. The stainless VCH and RVCH lattices were additively manufactured by Selective Laser Melting (SLM) using an EP-M450H metal 3D printer. The quasi-static compressive characteristics and energy absorption behaviors of RVCH lattices were studied experimentally. Finite element modeling was implemented to study the energy absorption mechanism of RVCH lattices. A parametric analysis based on the finite element models was conducted to study the influence of different metal strips on the energy absorption capacity of RVCH lattices. The results show that the RVCH lattices with metal strips attaching to the vertical edges can signally enhance energy absorption of lattice structures with good load uniformity. Furthermore, the natural frequencies analysis indicate that the higher bending stiffness and the tensile stiffness can be achieved for RVCH lattices. This novel lattice is more stable as a load-bearing structure and more efficient as an energy absorber, which can provide guidance in designing innovative lattice structures with excellent mechanical properties and energy absorption capacity.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109732"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crashworthiness and stiffness improvement of a variable cross-section hollow BCC lattice reinforced with metal strips\",\"authors\":\"Bo Li , Hua Liu , Qiao Zhang , Chuanguo Chai , Jie Wang , Jialing Yang , Xianfeng Yang\",\"doi\":\"10.1016/j.ast.2024.109732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ultra-lightweight structures with high mechanical properties and energy absorption behaviors are focused on the innovation structural design. The design strategy of implementing novel unit cells within architecture materials such as lattice materials enables the attainment of unparalleled combinations of mechanical properties and functionalities while minimizing weight. The most common method to design light-weight lattice materials is optimizing the geometric configurations of the unit cells. However, changing the geometric boundary of lattice structures can also be a good solution to improve the mechanical characteristics and energy absorption behaviors of the lattice materials. In this work, a novel variable cross-section hollow (VCH) lattice was established to improve the energy absorption capacity. By adding metal strips on the edge of the VCH lattices, a new reinforced variable cross-section hollow (RVCH) lattice with metal strips was developed to further enhance the stiffness and energy absorption capacity. The stainless VCH and RVCH lattices were additively manufactured by Selective Laser Melting (SLM) using an EP-M450H metal 3D printer. The quasi-static compressive characteristics and energy absorption behaviors of RVCH lattices were studied experimentally. Finite element modeling was implemented to study the energy absorption mechanism of RVCH lattices. A parametric analysis based on the finite element models was conducted to study the influence of different metal strips on the energy absorption capacity of RVCH lattices. The results show that the RVCH lattices with metal strips attaching to the vertical edges can signally enhance energy absorption of lattice structures with good load uniformity. Furthermore, the natural frequencies analysis indicate that the higher bending stiffness and the tensile stiffness can be achieved for RVCH lattices. This novel lattice is more stable as a load-bearing structure and more efficient as an energy absorber, which can provide guidance in designing innovative lattice structures with excellent mechanical properties and energy absorption capacity.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109732\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824008617\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008617","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Crashworthiness and stiffness improvement of a variable cross-section hollow BCC lattice reinforced with metal strips
The ultra-lightweight structures with high mechanical properties and energy absorption behaviors are focused on the innovation structural design. The design strategy of implementing novel unit cells within architecture materials such as lattice materials enables the attainment of unparalleled combinations of mechanical properties and functionalities while minimizing weight. The most common method to design light-weight lattice materials is optimizing the geometric configurations of the unit cells. However, changing the geometric boundary of lattice structures can also be a good solution to improve the mechanical characteristics and energy absorption behaviors of the lattice materials. In this work, a novel variable cross-section hollow (VCH) lattice was established to improve the energy absorption capacity. By adding metal strips on the edge of the VCH lattices, a new reinforced variable cross-section hollow (RVCH) lattice with metal strips was developed to further enhance the stiffness and energy absorption capacity. The stainless VCH and RVCH lattices were additively manufactured by Selective Laser Melting (SLM) using an EP-M450H metal 3D printer. The quasi-static compressive characteristics and energy absorption behaviors of RVCH lattices were studied experimentally. Finite element modeling was implemented to study the energy absorption mechanism of RVCH lattices. A parametric analysis based on the finite element models was conducted to study the influence of different metal strips on the energy absorption capacity of RVCH lattices. The results show that the RVCH lattices with metal strips attaching to the vertical edges can signally enhance energy absorption of lattice structures with good load uniformity. Furthermore, the natural frequencies analysis indicate that the higher bending stiffness and the tensile stiffness can be achieved for RVCH lattices. This novel lattice is more stable as a load-bearing structure and more efficient as an energy absorber, which can provide guidance in designing innovative lattice structures with excellent mechanical properties and energy absorption capacity.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.