{"title":"高效率过氧化物-CIGS-SnS 三结串联太阳能电池的光谱管理和电流匹配优化","authors":"Shivani Gohri, Jaya Madan, Rahul Pandey","doi":"10.1016/j.ssc.2024.115754","DOIUrl":null,"url":null,"abstract":"<div><div>Low-cost materials are used in this work to make a triple-junction tandem solar cell (TSC). Two-step filtered spectrum and current matching techniques are used to design a perovskite-CIGS-SnS based TSC using a SCAPS-1D simulator. To design a TSC, the top cell (TC) is illuminated with a 1.5AM spectrum, and the unabsorbed spectrum of the TC is utilized for the middle cell (MC). Similarly, the unabsorbed spectrum of the MC is used to illuminate the bottom cell (BC). Additional merits of this work: the perovskite used is a two-dimensional Dion Jacobson (DJ) perovskite, which is more stable than conventional perovskites. The results show that current matching is obtained at active layer thickness (nm) of 365/600/100 for TC/MC/BC, respectively. The proposed solar cell shows a remarkable PV performance of 3.25 V V<sub>OC</sub>, 9.42 mA/cm<sup>2</sup> J<sub>SC</sub>, 79.3 % FF and 24.27 % PCE.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115754"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral management and current matching optimization for high-efficiency perovskite-CIGS-SnS triple junction tandem solar cells\",\"authors\":\"Shivani Gohri, Jaya Madan, Rahul Pandey\",\"doi\":\"10.1016/j.ssc.2024.115754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-cost materials are used in this work to make a triple-junction tandem solar cell (TSC). Two-step filtered spectrum and current matching techniques are used to design a perovskite-CIGS-SnS based TSC using a SCAPS-1D simulator. To design a TSC, the top cell (TC) is illuminated with a 1.5AM spectrum, and the unabsorbed spectrum of the TC is utilized for the middle cell (MC). Similarly, the unabsorbed spectrum of the MC is used to illuminate the bottom cell (BC). Additional merits of this work: the perovskite used is a two-dimensional Dion Jacobson (DJ) perovskite, which is more stable than conventional perovskites. The results show that current matching is obtained at active layer thickness (nm) of 365/600/100 for TC/MC/BC, respectively. The proposed solar cell shows a remarkable PV performance of 3.25 V V<sub>OC</sub>, 9.42 mA/cm<sup>2</sup> J<sub>SC</sub>, 79.3 % FF and 24.27 % PCE.</div></div>\",\"PeriodicalId\":430,\"journal\":{\"name\":\"Solid State Communications\",\"volume\":\"395 \",\"pages\":\"Article 115754\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038109824003314\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003314","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Spectral management and current matching optimization for high-efficiency perovskite-CIGS-SnS triple junction tandem solar cells
Low-cost materials are used in this work to make a triple-junction tandem solar cell (TSC). Two-step filtered spectrum and current matching techniques are used to design a perovskite-CIGS-SnS based TSC using a SCAPS-1D simulator. To design a TSC, the top cell (TC) is illuminated with a 1.5AM spectrum, and the unabsorbed spectrum of the TC is utilized for the middle cell (MC). Similarly, the unabsorbed spectrum of the MC is used to illuminate the bottom cell (BC). Additional merits of this work: the perovskite used is a two-dimensional Dion Jacobson (DJ) perovskite, which is more stable than conventional perovskites. The results show that current matching is obtained at active layer thickness (nm) of 365/600/100 for TC/MC/BC, respectively. The proposed solar cell shows a remarkable PV performance of 3.25 V VOC, 9.42 mA/cm2 JSC, 79.3 % FF and 24.27 % PCE.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.