{"title":"压力诱发的晶格畸变对 L10-FeNi 有序合金物理性质的影响","authors":"Tai-min Cheng, Qing-qing Fan, Guo-qing chai, Xin-xin Zhang, Guo-liang Yu","doi":"10.1016/j.matchemphys.2024.130137","DOIUrl":null,"url":null,"abstract":"<div><div>The ground-state properties of tetragonal <em>L</em>1<sub>0</sub> type FeNi alloy have been thoroughly studied, while its physical properties under high pressure are poorly understood. Here, the effect of pressure on the structural, magnetic, mechanical and dynamical properties of <em>L</em>1<sub>0</sub>-FeNi are systematically investigated from the first principles calculations. The critical pressure of ferromagnetic collapse is detected to be 250 GPa, and the system is mechanically and dynamically stable below the critical pressure. The pressure-induced lattice distortion is identified in the pressure range of 80–150 GPa. Within this pressure range, the magnetic moments of the system decrease dramatically, the elastic constants <em>C</em><sub>12</sub>, <em>C</em><sub>13</sub>, <em>C</em><sub>33</sub> and bulk modulus <em>B</em> show softening behavior, and consequently the ductility, longitudinal sound velocity, and acoustic Grüneisen constant exhibit softening behavior, while the elastic anisotropy increase sharply. Furthermore, there are significant variations in magnetocrystalline anisotropy, coercivity, maximum magnetic energy product and magnetic hardness parameters within the pressure range of lattice distortion. More interesting is the discovery that the pressure-induced lattice distortion triggers a transition from semi-hard to hard magnet near 130 GPa.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130137"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of pressure-induced lattice distortion on physical properties of L10-FeNi ordered alloy\",\"authors\":\"Tai-min Cheng, Qing-qing Fan, Guo-qing chai, Xin-xin Zhang, Guo-liang Yu\",\"doi\":\"10.1016/j.matchemphys.2024.130137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ground-state properties of tetragonal <em>L</em>1<sub>0</sub> type FeNi alloy have been thoroughly studied, while its physical properties under high pressure are poorly understood. Here, the effect of pressure on the structural, magnetic, mechanical and dynamical properties of <em>L</em>1<sub>0</sub>-FeNi are systematically investigated from the first principles calculations. The critical pressure of ferromagnetic collapse is detected to be 250 GPa, and the system is mechanically and dynamically stable below the critical pressure. The pressure-induced lattice distortion is identified in the pressure range of 80–150 GPa. Within this pressure range, the magnetic moments of the system decrease dramatically, the elastic constants <em>C</em><sub>12</sub>, <em>C</em><sub>13</sub>, <em>C</em><sub>33</sub> and bulk modulus <em>B</em> show softening behavior, and consequently the ductility, longitudinal sound velocity, and acoustic Grüneisen constant exhibit softening behavior, while the elastic anisotropy increase sharply. Furthermore, there are significant variations in magnetocrystalline anisotropy, coercivity, maximum magnetic energy product and magnetic hardness parameters within the pressure range of lattice distortion. More interesting is the discovery that the pressure-induced lattice distortion triggers a transition from semi-hard to hard magnet near 130 GPa.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"329 \",\"pages\":\"Article 130137\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424012653\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012653","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of pressure-induced lattice distortion on physical properties of L10-FeNi ordered alloy
The ground-state properties of tetragonal L10 type FeNi alloy have been thoroughly studied, while its physical properties under high pressure are poorly understood. Here, the effect of pressure on the structural, magnetic, mechanical and dynamical properties of L10-FeNi are systematically investigated from the first principles calculations. The critical pressure of ferromagnetic collapse is detected to be 250 GPa, and the system is mechanically and dynamically stable below the critical pressure. The pressure-induced lattice distortion is identified in the pressure range of 80–150 GPa. Within this pressure range, the magnetic moments of the system decrease dramatically, the elastic constants C12, C13, C33 and bulk modulus B show softening behavior, and consequently the ductility, longitudinal sound velocity, and acoustic Grüneisen constant exhibit softening behavior, while the elastic anisotropy increase sharply. Furthermore, there are significant variations in magnetocrystalline anisotropy, coercivity, maximum magnetic energy product and magnetic hardness parameters within the pressure range of lattice distortion. More interesting is the discovery that the pressure-induced lattice distortion triggers a transition from semi-hard to hard magnet near 130 GPa.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.