Xuankai Zhao, Zhejie Ma, Xueru Li, Yujie Guo, Ping Li
{"title":"优化用于氧还原反应的 PtCu3@Pt/C 催化剂的原子层沉积铂壳厚度","authors":"Xuankai Zhao, Zhejie Ma, Xueru Li, Yujie Guo, Ping Li","doi":"10.1016/j.matchemphys.2024.130145","DOIUrl":null,"url":null,"abstract":"<div><div>A series of PtCu<sub>3</sub>@Pt/C catalysts with core@shell structure applicable to oxygen reduction reaction (ORR) were successfully synthesized by combining wet chemistry method for supported PtCu<sub>3</sub>/C preparation and atomic layer deposition (ALD) technique for Pt-shell covering PtCu<sub>3</sub> nanoparticles. The oxygen adsorption energy on the surface of model PtCu<sub>3</sub>@Pt(111) based on density functional theory calculation revealed that the optimal oxygen adsorption strength suitable for ORR appears on the PtCu<sub>3</sub>@Pt(111) having few layers of Pt-shell. For this purpose, the Pt-shell thickness was precisely adjusted by varying the number of ALD cycles between 1 and 6, and four ALD cycles were found to deposit approximately one layer of Pt atoms on the surface of PtCu<sub>3</sub> nanoparticles. In-depth investigation through material characterization verified the formation of PtCu<sub>3</sub> alloy and the adjustability of Pt-shell thickness. Strain effect and electronic effects were observed between the PtCu<sub>3</sub> core and Pt-shell, manifested as lattice compression of the Pt-shell and electron transfer from Pt band to Cu, both of which can downshift d-band center of the Pt-shell thus weakening the adsorption of oxygen species. The electrocatalytic performance of various PtCu<sub>3</sub>@Pt<sub>ALD-n</sub>/C (n = 1–6) catalysts was tested in the ORR process using rotating disk electrode approach. PtCu<sub>3</sub>@Pt<sub>ALD-4</sub>/C exhibited the maximum mass and specific activity among all catalysts, being 3.2 and 2.6 times higher than a commercial Pt/C catalyst, and much better as well than the PtCu<sub>3</sub>/C without Pt-shell. The durability of the PtCu<sub>3</sub>@Pt<sub>ALD-4</sub>/C catalyst was also superior to that of the PtCu<sub>3</sub>/C and Pt/C catalysts.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130145"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of atomic layer deposited Pt-shell thickness of PtCu3@Pt/C catalyst for oxygen reduction reaction\",\"authors\":\"Xuankai Zhao, Zhejie Ma, Xueru Li, Yujie Guo, Ping Li\",\"doi\":\"10.1016/j.matchemphys.2024.130145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A series of PtCu<sub>3</sub>@Pt/C catalysts with core@shell structure applicable to oxygen reduction reaction (ORR) were successfully synthesized by combining wet chemistry method for supported PtCu<sub>3</sub>/C preparation and atomic layer deposition (ALD) technique for Pt-shell covering PtCu<sub>3</sub> nanoparticles. The oxygen adsorption energy on the surface of model PtCu<sub>3</sub>@Pt(111) based on density functional theory calculation revealed that the optimal oxygen adsorption strength suitable for ORR appears on the PtCu<sub>3</sub>@Pt(111) having few layers of Pt-shell. For this purpose, the Pt-shell thickness was precisely adjusted by varying the number of ALD cycles between 1 and 6, and four ALD cycles were found to deposit approximately one layer of Pt atoms on the surface of PtCu<sub>3</sub> nanoparticles. In-depth investigation through material characterization verified the formation of PtCu<sub>3</sub> alloy and the adjustability of Pt-shell thickness. Strain effect and electronic effects were observed between the PtCu<sub>3</sub> core and Pt-shell, manifested as lattice compression of the Pt-shell and electron transfer from Pt band to Cu, both of which can downshift d-band center of the Pt-shell thus weakening the adsorption of oxygen species. The electrocatalytic performance of various PtCu<sub>3</sub>@Pt<sub>ALD-n</sub>/C (n = 1–6) catalysts was tested in the ORR process using rotating disk electrode approach. PtCu<sub>3</sub>@Pt<sub>ALD-4</sub>/C exhibited the maximum mass and specific activity among all catalysts, being 3.2 and 2.6 times higher than a commercial Pt/C catalyst, and much better as well than the PtCu<sub>3</sub>/C without Pt-shell. The durability of the PtCu<sub>3</sub>@Pt<sub>ALD-4</sub>/C catalyst was also superior to that of the PtCu<sub>3</sub>/C and Pt/C catalysts.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"329 \",\"pages\":\"Article 130145\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424012732\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012732","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimization of atomic layer deposited Pt-shell thickness of PtCu3@Pt/C catalyst for oxygen reduction reaction
A series of PtCu3@Pt/C catalysts with core@shell structure applicable to oxygen reduction reaction (ORR) were successfully synthesized by combining wet chemistry method for supported PtCu3/C preparation and atomic layer deposition (ALD) technique for Pt-shell covering PtCu3 nanoparticles. The oxygen adsorption energy on the surface of model PtCu3@Pt(111) based on density functional theory calculation revealed that the optimal oxygen adsorption strength suitable for ORR appears on the PtCu3@Pt(111) having few layers of Pt-shell. For this purpose, the Pt-shell thickness was precisely adjusted by varying the number of ALD cycles between 1 and 6, and four ALD cycles were found to deposit approximately one layer of Pt atoms on the surface of PtCu3 nanoparticles. In-depth investigation through material characterization verified the formation of PtCu3 alloy and the adjustability of Pt-shell thickness. Strain effect and electronic effects were observed between the PtCu3 core and Pt-shell, manifested as lattice compression of the Pt-shell and electron transfer from Pt band to Cu, both of which can downshift d-band center of the Pt-shell thus weakening the adsorption of oxygen species. The electrocatalytic performance of various PtCu3@PtALD-n/C (n = 1–6) catalysts was tested in the ORR process using rotating disk electrode approach. PtCu3@PtALD-4/C exhibited the maximum mass and specific activity among all catalysts, being 3.2 and 2.6 times higher than a commercial Pt/C catalyst, and much better as well than the PtCu3/C without Pt-shell. The durability of the PtCu3@PtALD-4/C catalyst was also superior to that of the PtCu3/C and Pt/C catalysts.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.