{"title":"基于载荷相互作用和强度退化的新型非线性疲劳累积损伤模型","authors":"Qian Xiao, Xilin Wang, Daoyun Chen, Xinjian Zhou, Xinlong Liu, Wenbin Yang","doi":"10.1016/j.ijfatigue.2024.108709","DOIUrl":null,"url":null,"abstract":"<div><div>A new nonlinear fatigue cumulative damage model is proposed to address the challenge of insufficient accuracy in calculations stemming from nonlinear cumulative damage models that fail to account for strength degradation effects and interactions among multi-level loads. This model, an enhancement of the Aeran fatigue damage model, incorporates stress ratios to capture load interactions and includes a logarithmic residual strength degradation model extended to multi-level stress states. Comparative analysis of this model against the Miner model and two other models across various material fatigue datasets shows superior predictive accuracy. Specifically, the new model demonstrates a 74.43% improvement over the Aeran model under six-level loading conditions. Its straightforward mathematical formulation makes it practical for engineering applications in fatigue life prediction.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108709"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new nonlinear fatigue cumulative damage model based on load interaction and strength degradation\",\"authors\":\"Qian Xiao, Xilin Wang, Daoyun Chen, Xinjian Zhou, Xinlong Liu, Wenbin Yang\",\"doi\":\"10.1016/j.ijfatigue.2024.108709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new nonlinear fatigue cumulative damage model is proposed to address the challenge of insufficient accuracy in calculations stemming from nonlinear cumulative damage models that fail to account for strength degradation effects and interactions among multi-level loads. This model, an enhancement of the Aeran fatigue damage model, incorporates stress ratios to capture load interactions and includes a logarithmic residual strength degradation model extended to multi-level stress states. Comparative analysis of this model against the Miner model and two other models across various material fatigue datasets shows superior predictive accuracy. Specifically, the new model demonstrates a 74.43% improvement over the Aeran model under six-level loading conditions. Its straightforward mathematical formulation makes it practical for engineering applications in fatigue life prediction.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"191 \",\"pages\":\"Article 108709\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005681\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005681","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A new nonlinear fatigue cumulative damage model based on load interaction and strength degradation
A new nonlinear fatigue cumulative damage model is proposed to address the challenge of insufficient accuracy in calculations stemming from nonlinear cumulative damage models that fail to account for strength degradation effects and interactions among multi-level loads. This model, an enhancement of the Aeran fatigue damage model, incorporates stress ratios to capture load interactions and includes a logarithmic residual strength degradation model extended to multi-level stress states. Comparative analysis of this model against the Miner model and two other models across various material fatigue datasets shows superior predictive accuracy. Specifically, the new model demonstrates a 74.43% improvement over the Aeran model under six-level loading conditions. Its straightforward mathematical formulation makes it practical for engineering applications in fatigue life prediction.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.