Zheng-Yu Mao , De-Guang Shang , Dao-Hang Li , Na-Min Xiao , Ai-Xue Sha , Jing-Xuan Li , Cheng Qian , Quan Zhou , Wen-Long Li
{"title":"不同单轴/多轴热机械加载模式下 Ti60 的损伤机理","authors":"Zheng-Yu Mao , De-Guang Shang , Dao-Hang Li , Na-Min Xiao , Ai-Xue Sha , Jing-Xuan Li , Cheng Qian , Quan Zhou , Wen-Long Li","doi":"10.1016/j.ijfatigue.2024.108707","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue experiments for titanium alloy Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes found that the combined action of high temperature and tensile stress can cause the debonding of the second phase strengthening particles between grain boundary, reducing the ability to resist deformation of Ti60, which leads to a decrease in the fatigue life of the material. In addition, mean tensile stress increases the ability of cracks to break through intergranular barriers and the non-proportional additional hardening caused by multiaxial loading exacerbates the formation of microcracks. Both will increase the fatigue damage of the material. The fatigue damage mechanism identified in this investigation can reasonably explain the fatigue life law under multiaxial loading at high temperature, uniaxial and multiaxial thermo-mechanical fatigue loadings.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108707"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes\",\"authors\":\"Zheng-Yu Mao , De-Guang Shang , Dao-Hang Li , Na-Min Xiao , Ai-Xue Sha , Jing-Xuan Li , Cheng Qian , Quan Zhou , Wen-Long Li\",\"doi\":\"10.1016/j.ijfatigue.2024.108707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fatigue experiments for titanium alloy Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes found that the combined action of high temperature and tensile stress can cause the debonding of the second phase strengthening particles between grain boundary, reducing the ability to resist deformation of Ti60, which leads to a decrease in the fatigue life of the material. In addition, mean tensile stress increases the ability of cracks to break through intergranular barriers and the non-proportional additional hardening caused by multiaxial loading exacerbates the formation of microcracks. Both will increase the fatigue damage of the material. The fatigue damage mechanism identified in this investigation can reasonably explain the fatigue life law under multiaxial loading at high temperature, uniaxial and multiaxial thermo-mechanical fatigue loadings.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"191 \",\"pages\":\"Article 108707\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005668\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005668","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes
The fatigue experiments for titanium alloy Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes found that the combined action of high temperature and tensile stress can cause the debonding of the second phase strengthening particles between grain boundary, reducing the ability to resist deformation of Ti60, which leads to a decrease in the fatigue life of the material. In addition, mean tensile stress increases the ability of cracks to break through intergranular barriers and the non-proportional additional hardening caused by multiaxial loading exacerbates the formation of microcracks. Both will increase the fatigue damage of the material. The fatigue damage mechanism identified in this investigation can reasonably explain the fatigue life law under multiaxial loading at high temperature, uniaxial and multiaxial thermo-mechanical fatigue loadings.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.