{"title":"利用 PALSAR-2 数据进行基于 Naïve Bayes 高斯混合模型和合成孔径雷达偏振测量法的自动淹没植被研究","authors":"Samvedya Surampudi, Vijay Kumar","doi":"10.1016/j.rsase.2024.101361","DOIUrl":null,"url":null,"abstract":"<div><div>Flood mapping using Synthetic Aperture Radar (SAR) data impose limitations in fully distinguishing flood under vegetation due to false double bounce returns from inundated tree trunks along with seasonal heterogeneities devised from changing land cover settings. In addition, rapid mapping of flooded vegetation is challenging during near real time applications. In this paper a fully automatic novel supervised classification approach called polarimetric Naïve Bayes is proposed that combines polarimetric information with series of Gaussian mixture models in Naïve Bayes framework to detect various flooded vegetation classes. It also allows the user to choose class configuration and eliminates creation of Region of Interest (ROI) for supervised training. The proposed approach uses scattering information from pre monsoon PolSAR dataset in training step to create ROIs for buildings and other features. In the next step series of Gaussian Mixtures are used for density estimation for different features in Bayesian multiclass problem. The newly developed classifier applied on 2016 Assam flood event resulted in precise mapping of at least three different vegetation classes under flood such as submerged vegetation, wetlands and floating vegetation. Under optimal class configuration, the approach showed better performance compared to other supervised techniques applied on the same data set such as MLE, Mahalanobis, Minimum Euclidean distance, and SVM classifications in delineating flood, submerged vegetation, wetlands and floating vegetation with Producer’s Accuracy of 98.6%, 81.1%, 94% and 51.5% respectively and combined Overall accuracy of 95.5% for flooded vegetation class. This method also detected multiple vegetation classes with better accuracy compared to similar methods.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101361"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Naïve Bayes Gaussian mixture models and SAR polarimetry based automatic flooded vegetation studies using PALSAR-2 data\",\"authors\":\"Samvedya Surampudi, Vijay Kumar\",\"doi\":\"10.1016/j.rsase.2024.101361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flood mapping using Synthetic Aperture Radar (SAR) data impose limitations in fully distinguishing flood under vegetation due to false double bounce returns from inundated tree trunks along with seasonal heterogeneities devised from changing land cover settings. In addition, rapid mapping of flooded vegetation is challenging during near real time applications. In this paper a fully automatic novel supervised classification approach called polarimetric Naïve Bayes is proposed that combines polarimetric information with series of Gaussian mixture models in Naïve Bayes framework to detect various flooded vegetation classes. It also allows the user to choose class configuration and eliminates creation of Region of Interest (ROI) for supervised training. The proposed approach uses scattering information from pre monsoon PolSAR dataset in training step to create ROIs for buildings and other features. In the next step series of Gaussian Mixtures are used for density estimation for different features in Bayesian multiclass problem. The newly developed classifier applied on 2016 Assam flood event resulted in precise mapping of at least three different vegetation classes under flood such as submerged vegetation, wetlands and floating vegetation. Under optimal class configuration, the approach showed better performance compared to other supervised techniques applied on the same data set such as MLE, Mahalanobis, Minimum Euclidean distance, and SVM classifications in delineating flood, submerged vegetation, wetlands and floating vegetation with Producer’s Accuracy of 98.6%, 81.1%, 94% and 51.5% respectively and combined Overall accuracy of 95.5% for flooded vegetation class. This method also detected multiple vegetation classes with better accuracy compared to similar methods.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101361\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hybrid Naïve Bayes Gaussian mixture models and SAR polarimetry based automatic flooded vegetation studies using PALSAR-2 data
Flood mapping using Synthetic Aperture Radar (SAR) data impose limitations in fully distinguishing flood under vegetation due to false double bounce returns from inundated tree trunks along with seasonal heterogeneities devised from changing land cover settings. In addition, rapid mapping of flooded vegetation is challenging during near real time applications. In this paper a fully automatic novel supervised classification approach called polarimetric Naïve Bayes is proposed that combines polarimetric information with series of Gaussian mixture models in Naïve Bayes framework to detect various flooded vegetation classes. It also allows the user to choose class configuration and eliminates creation of Region of Interest (ROI) for supervised training. The proposed approach uses scattering information from pre monsoon PolSAR dataset in training step to create ROIs for buildings and other features. In the next step series of Gaussian Mixtures are used for density estimation for different features in Bayesian multiclass problem. The newly developed classifier applied on 2016 Assam flood event resulted in precise mapping of at least three different vegetation classes under flood such as submerged vegetation, wetlands and floating vegetation. Under optimal class configuration, the approach showed better performance compared to other supervised techniques applied on the same data set such as MLE, Mahalanobis, Minimum Euclidean distance, and SVM classifications in delineating flood, submerged vegetation, wetlands and floating vegetation with Producer’s Accuracy of 98.6%, 81.1%, 94% and 51.5% respectively and combined Overall accuracy of 95.5% for flooded vegetation class. This method also detected multiple vegetation classes with better accuracy compared to similar methods.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems