{"title":"基于频率通道注意的视觉变压器方法,用于在不同工作条件下识别轴承故障","authors":"Ling Xiang, Hankun Bing, Xianze Li, Aijun Hu","doi":"10.1016/j.eswa.2024.125686","DOIUrl":null,"url":null,"abstract":"<div><div>Fault identification of rolling bearings plays a crucial role in maintaining the efficient and stable operation of equipment. Although traditional fault identification methods have made certain progress, they still lack in model feature extraction capabilities and generalization ability. In this paper, a frequency channel-attention based vision Transformer method is proposed for rolling bearings intelligent fault identification. Using frequency domain channel-attention mechanism, the proposed method is able to preserve fundamental fault information and integrate the frequency characteristics of the vibration signals. The proposed method also leverages the inherent self-attention mechanism of vision Transformer to recognize long-range dependencies within the signal data. This integration of attention not only enhances the model’s sensitivity to signal frequency characteristics but also enables the visualization of the attention mechanism, thereby increasing the model’s interpretability. Additionally, a shift linear layer is proposed to reduce the model’s computational demands while maintaining its robust feature extraction capabilities. This proposed method directly uses the collected vibration raw signals to achieve precise fault identification of rolling bearings, and experimental validation on two datasets demonstrates the model’s diagnostic accuracy under across working conditions.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125686"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A frequency channel-attention based vision Transformer method for bearing fault identification across different working conditions\",\"authors\":\"Ling Xiang, Hankun Bing, Xianze Li, Aijun Hu\",\"doi\":\"10.1016/j.eswa.2024.125686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fault identification of rolling bearings plays a crucial role in maintaining the efficient and stable operation of equipment. Although traditional fault identification methods have made certain progress, they still lack in model feature extraction capabilities and generalization ability. In this paper, a frequency channel-attention based vision Transformer method is proposed for rolling bearings intelligent fault identification. Using frequency domain channel-attention mechanism, the proposed method is able to preserve fundamental fault information and integrate the frequency characteristics of the vibration signals. The proposed method also leverages the inherent self-attention mechanism of vision Transformer to recognize long-range dependencies within the signal data. This integration of attention not only enhances the model’s sensitivity to signal frequency characteristics but also enables the visualization of the attention mechanism, thereby increasing the model’s interpretability. Additionally, a shift linear layer is proposed to reduce the model’s computational demands while maintaining its robust feature extraction capabilities. This proposed method directly uses the collected vibration raw signals to achieve precise fault identification of rolling bearings, and experimental validation on two datasets demonstrates the model’s diagnostic accuracy under across working conditions.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"262 \",\"pages\":\"Article 125686\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424025533\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025533","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A frequency channel-attention based vision Transformer method for bearing fault identification across different working conditions
Fault identification of rolling bearings plays a crucial role in maintaining the efficient and stable operation of equipment. Although traditional fault identification methods have made certain progress, they still lack in model feature extraction capabilities and generalization ability. In this paper, a frequency channel-attention based vision Transformer method is proposed for rolling bearings intelligent fault identification. Using frequency domain channel-attention mechanism, the proposed method is able to preserve fundamental fault information and integrate the frequency characteristics of the vibration signals. The proposed method also leverages the inherent self-attention mechanism of vision Transformer to recognize long-range dependencies within the signal data. This integration of attention not only enhances the model’s sensitivity to signal frequency characteristics but also enables the visualization of the attention mechanism, thereby increasing the model’s interpretability. Additionally, a shift linear layer is proposed to reduce the model’s computational demands while maintaining its robust feature extraction capabilities. This proposed method directly uses the collected vibration raw signals to achieve precise fault identification of rolling bearings, and experimental validation on two datasets demonstrates the model’s diagnostic accuracy under across working conditions.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.