减少不平衡数据集中的假阴性:一种集合方法

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Marcelo Vasconcelos , Luís Cavique
{"title":"减少不平衡数据集中的假阴性:一种集合方法","authors":"Marcelo Vasconcelos ,&nbsp;Luís Cavique","doi":"10.1016/j.eswa.2024.125674","DOIUrl":null,"url":null,"abstract":"<div><div>Imbalanced datasets present a challenge in machine learning, especially in binary classification scenarios where one class significantly outweighs the other. This imbalance often leads to models favoring the majority class, resulting in inadequate predictions for the minority class, specifically in false negatives. In response to this issue, this work introduces the MinFNR ensemble algorithm, designed to minimize False Negative Rates (FNR) in imbalanced datasets. The new approach strategically combines data-level, algorithmic-level, and hybrid-level approaches to enhance overall predictive capabilities while minimizing computational resources using the Set Covering Problem (SCP) formulation. Through a comprehensive evaluation of diverse datasets, MinFNR consistently outperforms individual algorithms, showing its potential for applications where the cost of false negatives is substantial, such as fraud detection and medical diagnosis. This work also contributes to ongoing efforts to improve the reliability and effectiveness of machine learning algorithms in real imbalanced scenarios.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125674"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating false negatives in imbalanced datasets: An ensemble approach\",\"authors\":\"Marcelo Vasconcelos ,&nbsp;Luís Cavique\",\"doi\":\"10.1016/j.eswa.2024.125674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Imbalanced datasets present a challenge in machine learning, especially in binary classification scenarios where one class significantly outweighs the other. This imbalance often leads to models favoring the majority class, resulting in inadequate predictions for the minority class, specifically in false negatives. In response to this issue, this work introduces the MinFNR ensemble algorithm, designed to minimize False Negative Rates (FNR) in imbalanced datasets. The new approach strategically combines data-level, algorithmic-level, and hybrid-level approaches to enhance overall predictive capabilities while minimizing computational resources using the Set Covering Problem (SCP) formulation. Through a comprehensive evaluation of diverse datasets, MinFNR consistently outperforms individual algorithms, showing its potential for applications where the cost of false negatives is substantial, such as fraud detection and medical diagnosis. This work also contributes to ongoing efforts to improve the reliability and effectiveness of machine learning algorithms in real imbalanced scenarios.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"262 \",\"pages\":\"Article 125674\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424025417\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025417","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

不平衡的数据集给机器学习带来了挑战,尤其是在二元分类场景中,其中一类的数量明显多于另一类。这种不平衡往往会导致模型偏向于多数类,从而导致对少数类的预测不足,特别是出现假阴性。针对这一问题,这项研究引入了 MinFNR 集合算法,旨在最大限度地降低不平衡数据集中的假阴性率(FNR)。新方法战略性地结合了数据级、算法级和混合级方法,以增强整体预测能力,同时利用集合覆盖问题(SCP)公式最大限度地减少计算资源。通过对不同数据集的综合评估,MinFNR 的性能始终优于单个算法,这表明它在欺诈检测和医疗诊断等假阴性成本较高的应用领域具有很大的潜力。这项工作还有助于提高机器学习算法在实际不平衡场景中的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating false negatives in imbalanced datasets: An ensemble approach
Imbalanced datasets present a challenge in machine learning, especially in binary classification scenarios where one class significantly outweighs the other. This imbalance often leads to models favoring the majority class, resulting in inadequate predictions for the minority class, specifically in false negatives. In response to this issue, this work introduces the MinFNR ensemble algorithm, designed to minimize False Negative Rates (FNR) in imbalanced datasets. The new approach strategically combines data-level, algorithmic-level, and hybrid-level approaches to enhance overall predictive capabilities while minimizing computational resources using the Set Covering Problem (SCP) formulation. Through a comprehensive evaluation of diverse datasets, MinFNR consistently outperforms individual algorithms, showing its potential for applications where the cost of false negatives is substantial, such as fraud detection and medical diagnosis. This work also contributes to ongoing efforts to improve the reliability and effectiveness of machine learning algorithms in real imbalanced scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信