带延迟的非一致性分数阶中性微分系统的修正米哈伊洛夫稳定性准则

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Ha Duc Thai, Hoang The Tuan
{"title":"带延迟的非一致性分数阶中性微分系统的修正米哈伊洛夫稳定性准则","authors":"Ha Duc Thai,&nbsp;Hoang The Tuan","doi":"10.1016/j.jfranklin.2024.107384","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the asymptotic stability of non-commensurate fractional-order neutral differential systems with constant delays. To do this, we propose a modified Mikhailov stability criterion. Our work not only generalizes the existing results in the literature but also provides a rigorous mathematical basis for the frequency domain analysis method concerning fractional-order systems with delays. Specific examples and numerical illustrations are also provided to demonstrate the validity of the obtained result.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 1","pages":"Article 107384"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Mikhailov stability criterion for non-commensurate fractional-order neutral differential systems with delays\",\"authors\":\"Ha Duc Thai,&nbsp;Hoang The Tuan\",\"doi\":\"10.1016/j.jfranklin.2024.107384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the asymptotic stability of non-commensurate fractional-order neutral differential systems with constant delays. To do this, we propose a modified Mikhailov stability criterion. Our work not only generalizes the existing results in the literature but also provides a rigorous mathematical basis for the frequency domain analysis method concerning fractional-order systems with delays. Specific examples and numerical illustrations are also provided to demonstrate the validity of the obtained result.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 1\",\"pages\":\"Article 107384\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003224008056\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224008056","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有恒定延迟的非一致性分数阶中性微分系统的渐近稳定性。为此,我们提出了改进的 Mikhailov 稳定性准则。我们的工作不仅推广了文献中的现有结果,还为有延迟的分数阶系统的频域分析方法提供了严格的数学基础。我们还提供了具体实例和数值说明,以证明所获结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Mikhailov stability criterion for non-commensurate fractional-order neutral differential systems with delays
This paper studies the asymptotic stability of non-commensurate fractional-order neutral differential systems with constant delays. To do this, we propose a modified Mikhailov stability criterion. Our work not only generalizes the existing results in the literature but also provides a rigorous mathematical basis for the frequency domain analysis method concerning fractional-order systems with delays. Specific examples and numerical illustrations are also provided to demonstrate the validity of the obtained result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信