Yuncan Ouyang , Hao Zhai , Hanyue Hu , Xiaohang Li , Zhi Zeng
{"title":"FusionGCN:利用超像素特征生成 GCN 和像素级特征重构 CNN 进行多焦点图像融合","authors":"Yuncan Ouyang , Hao Zhai , Hanyue Hu , Xiaohang Li , Zhi Zeng","doi":"10.1016/j.eswa.2024.125665","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, convolutional neural networks have demonstrated significant advancements in the domain of computer vision, effectively addressing numerous previously challenging issues. An increasing number of researchers are focusing their investigations on this field, proposing innovative network architectures. However, many existing networks necessitate intricate module designs and a substantial number of parameters to achieve satisfactory fusion outcomes, which poses challenges for lightweight devices with constrained computational resources. To mitigate this concern, the present study introduces a novel methodology that integrates block segmentation with pixel optimization. Specifically, we initially employ graph convolutional networks to execute flexible convolutions on large-scale, irregular regions generated through superpixel clustering, thereby achieving coarse segmentation at the block level. Subsequently, we utilize parallel lightweight convolutional networks to provide pixel-level guidance, ultimately resulting in a more accurate decision map. Furthermore, to leverage the strengths of both networks and facilitate the optimization of feature generation from the graph convolutional network for non-Euclidean data, we meticulously design a superpixel-based graph decoder alongside a pixel-based convolutional neural network extraction block to enhance feature acquisition and propagation. In comparison to numerous state-of-the-art methodologies, our approach demonstrates commendable competitiveness in both qualitative and quantitative analyses, as well as in efficiency evaluations. The code can be downloaded at <span><span>https://github.com/ouyangbaicai/FusionGCN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"262 ","pages":"Article 125665"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FusionGCN: Multi-focus image fusion using superpixel features generation GCN and pixel-level feature reconstruction CNN\",\"authors\":\"Yuncan Ouyang , Hao Zhai , Hanyue Hu , Xiaohang Li , Zhi Zeng\",\"doi\":\"10.1016/j.eswa.2024.125665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, convolutional neural networks have demonstrated significant advancements in the domain of computer vision, effectively addressing numerous previously challenging issues. An increasing number of researchers are focusing their investigations on this field, proposing innovative network architectures. However, many existing networks necessitate intricate module designs and a substantial number of parameters to achieve satisfactory fusion outcomes, which poses challenges for lightweight devices with constrained computational resources. To mitigate this concern, the present study introduces a novel methodology that integrates block segmentation with pixel optimization. Specifically, we initially employ graph convolutional networks to execute flexible convolutions on large-scale, irregular regions generated through superpixel clustering, thereby achieving coarse segmentation at the block level. Subsequently, we utilize parallel lightweight convolutional networks to provide pixel-level guidance, ultimately resulting in a more accurate decision map. Furthermore, to leverage the strengths of both networks and facilitate the optimization of feature generation from the graph convolutional network for non-Euclidean data, we meticulously design a superpixel-based graph decoder alongside a pixel-based convolutional neural network extraction block to enhance feature acquisition and propagation. In comparison to numerous state-of-the-art methodologies, our approach demonstrates commendable competitiveness in both qualitative and quantitative analyses, as well as in efficiency evaluations. The code can be downloaded at <span><span>https://github.com/ouyangbaicai/FusionGCN</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"262 \",\"pages\":\"Article 125665\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424025326\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025326","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
FusionGCN: Multi-focus image fusion using superpixel features generation GCN and pixel-level feature reconstruction CNN
In recent years, convolutional neural networks have demonstrated significant advancements in the domain of computer vision, effectively addressing numerous previously challenging issues. An increasing number of researchers are focusing their investigations on this field, proposing innovative network architectures. However, many existing networks necessitate intricate module designs and a substantial number of parameters to achieve satisfactory fusion outcomes, which poses challenges for lightweight devices with constrained computational resources. To mitigate this concern, the present study introduces a novel methodology that integrates block segmentation with pixel optimization. Specifically, we initially employ graph convolutional networks to execute flexible convolutions on large-scale, irregular regions generated through superpixel clustering, thereby achieving coarse segmentation at the block level. Subsequently, we utilize parallel lightweight convolutional networks to provide pixel-level guidance, ultimately resulting in a more accurate decision map. Furthermore, to leverage the strengths of both networks and facilitate the optimization of feature generation from the graph convolutional network for non-Euclidean data, we meticulously design a superpixel-based graph decoder alongside a pixel-based convolutional neural network extraction block to enhance feature acquisition and propagation. In comparison to numerous state-of-the-art methodologies, our approach demonstrates commendable competitiveness in both qualitative and quantitative analyses, as well as in efficiency evaluations. The code can be downloaded at https://github.com/ouyangbaicai/FusionGCN.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.