{"title":"米勒-舒普群列报的新安德鲁斯-柯蒂斯三段论","authors":"Alexei Lisitsa","doi":"10.1016/j.exco.2024.100168","DOIUrl":null,"url":null,"abstract":"<div><div>We present recent developments in the applications of automated theorem proving in the investigation of the Andrews–Curtis conjecture. We demonstrate previously unknown trivializations of group presentations from a parametric family <span><math><mrow><mi>M</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> of trivial group presentations for <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>8</mn></mrow></math></span> (subset of well-known Miller–Schupp family). Based on the human analysis of these trivializations we formulate two conjectures on the structure of simplifications for the infinite family <span><math><mrow><mi>M</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100168"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Andrews–Curtis trivializations for Miller–Schupp group presentations\",\"authors\":\"Alexei Lisitsa\",\"doi\":\"10.1016/j.exco.2024.100168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present recent developments in the applications of automated theorem proving in the investigation of the Andrews–Curtis conjecture. We demonstrate previously unknown trivializations of group presentations from a parametric family <span><math><mrow><mi>M</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> of trivial group presentations for <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>8</mn></mrow></math></span> (subset of well-known Miller–Schupp family). Based on the human analysis of these trivializations we formulate two conjectures on the structure of simplifications for the infinite family <span><math><mrow><mi>M</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"6 \",\"pages\":\"Article 100168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X2400034X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X2400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Andrews–Curtis trivializations for Miller–Schupp group presentations
We present recent developments in the applications of automated theorem proving in the investigation of the Andrews–Curtis conjecture. We demonstrate previously unknown trivializations of group presentations from a parametric family of trivial group presentations for (subset of well-known Miller–Schupp family). Based on the human analysis of these trivializations we formulate two conjectures on the structure of simplifications for the infinite family , .