米勒-舒普群列报的新安德鲁斯-柯蒂斯三段论

Alexei Lisitsa
{"title":"米勒-舒普群列报的新安德鲁斯-柯蒂斯三段论","authors":"Alexei Lisitsa","doi":"10.1016/j.exco.2024.100168","DOIUrl":null,"url":null,"abstract":"<div><div>We present recent developments in the applications of automated theorem proving in the investigation of the Andrews–Curtis conjecture. We demonstrate previously unknown trivializations of group presentations from a parametric family <span><math><mrow><mi>M</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> of trivial group presentations for <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>8</mn></mrow></math></span> (subset of well-known Miller–Schupp family). Based on the human analysis of these trivializations we formulate two conjectures on the structure of simplifications for the infinite family <span><math><mrow><mi>M</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100168"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Andrews–Curtis trivializations for Miller–Schupp group presentations\",\"authors\":\"Alexei Lisitsa\",\"doi\":\"10.1016/j.exco.2024.100168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present recent developments in the applications of automated theorem proving in the investigation of the Andrews–Curtis conjecture. We demonstrate previously unknown trivializations of group presentations from a parametric family <span><math><mrow><mi>M</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> of trivial group presentations for <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>8</mn></mrow></math></span> (subset of well-known Miller–Schupp family). Based on the human analysis of these trivializations we formulate two conjectures on the structure of simplifications for the infinite family <span><math><mrow><mi>M</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"6 \",\"pages\":\"Article 100168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X2400034X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X2400034X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了在研究安德鲁斯-柯蒂斯猜想过程中应用自动定理证明的最新进展。我们从 n=3,4,5,6,7,8 的琐碎群呈现的参数族 MSn(w∗)(众所周知的米勒-舒普族的子集)中展示了之前未知的群呈现的琐碎化。基于对这些琐碎化的人为分析,我们提出了两个关于无穷族 MSn(w∗)(n≥3)简化结构的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Andrews–Curtis trivializations for Miller–Schupp group presentations
We present recent developments in the applications of automated theorem proving in the investigation of the Andrews–Curtis conjecture. We demonstrate previously unknown trivializations of group presentations from a parametric family MSn(w) of trivial group presentations for n=3,4,5,6,7,8 (subset of well-known Miller–Schupp family). Based on the human analysis of these trivializations we formulate two conjectures on the structure of simplifications for the infinite family MSn(w), n3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信