分散管理 NLS 的全局存在与有限时间爆炸二分法

IF 1.3 2区 数学 Q1 MATHEMATICS
Mi-Ran Choi , Younghun Hong , Young-Ran Lee
{"title":"分散管理 NLS 的全局存在与有限时间爆炸二分法","authors":"Mi-Ran Choi ,&nbsp;Younghun Hong ,&nbsp;Young-Ran Lee","doi":"10.1016/j.na.2024.113696","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Gabitov–Turitsyn equation or the dispersion managed nonlinear Schrödinger equation of a power-type nonlinearity <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>av</mi></mrow></msub><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>i</mi><mi>r</mi><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msup><mrow><mo>(</mo><mrow><msup><mrow><mrow><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>r</mi><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msup><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>r</mi><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msup><mi>u</mi></mrow><mo>)</mo></mrow><mi>d</mi><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math></span></span></span>and prove the global existence versus finite time blowup dichotomy for the mass-supercritical cases, that is, <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>9</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113696"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence versus finite time blowup dichotomy for the dispersion managed NLS\",\"authors\":\"Mi-Ran Choi ,&nbsp;Younghun Hong ,&nbsp;Young-Ran Lee\",\"doi\":\"10.1016/j.na.2024.113696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the Gabitov–Turitsyn equation or the dispersion managed nonlinear Schrödinger equation of a power-type nonlinearity <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>av</mi></mrow></msub><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>i</mi><mi>r</mi><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msup><mrow><mo>(</mo><mrow><msup><mrow><mrow><mo>|</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>r</mi><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msup><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>r</mi><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></msup><mi>u</mi></mrow><mo>)</mo></mrow><mi>d</mi><mi>r</mi><mo>=</mo><mn>0</mn></mrow></math></span></span></span>and prove the global existence versus finite time blowup dichotomy for the mass-supercritical cases, that is, <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>9</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"251 \",\"pages\":\"Article 113696\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24002153\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002153","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了功率型非线性 i∂tu+dav∂x2u+∫01e-ir∂x2(|eir∂x2u|p-1eir∂x2u)dr=0 的加比托夫-图里岑方程或分散管理非线性薛定谔方程,并证明了质量超临界情况(即 p>9)下的全局存在与有限时间炸毁二分法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence versus finite time blowup dichotomy for the dispersion managed NLS
We consider the Gabitov–Turitsyn equation or the dispersion managed nonlinear Schrödinger equation of a power-type nonlinearity itu+davx2u+01eirx2(|eirx2u|p1eirx2u)dr=0and prove the global existence versus finite time blowup dichotomy for the mass-supercritical cases, that is, p>9.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信