托马斯-费米型变分问题的最优衰减和正则性

IF 1.3 2区 数学 Q1 MATHEMATICS
Damiano Greco
{"title":"托马斯-费米型变分问题的最优衰减和正则性","authors":"Damiano Greco","doi":"10.1016/j.na.2024.113698","DOIUrl":null,"url":null,"abstract":"<div><div>We study existence and qualitative properties of the minimizers for a Thomas–Fermi type energy functional defined by <span><span><span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>ρ</mi><mo>)</mo></mrow><mo>≔</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mo>∬</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><mfrac><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>ρ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow><mrow><mi>d</mi><mo>−</mo><mi>α</mi></mrow></msup></mrow></mfrac><mi>d</mi><mi>x</mi><mi>d</mi><mi>y</mi><mo>−</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>d</mi><mo>∈</mo><mrow><mo>[</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mi>α</mi></mrow></mfrac><mo>,</mo><mi>∞</mi></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>V</mi></math></span> is a potential. Under broad assumptions on <span><math><mi>V</mi></math></span> we establish existence, uniqueness and qualitative properties such as positivity, regularity and decay at infinity of the global minimizer. The decay at infinity depends in a non-trivial way on the choice of <span><math><mi>α</mi></math></span> and <span><math><mi>q</mi></math></span>. If <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span> the global minimizer is proved to be positive under mild regularity assumptions on <span><math><mi>V</mi></math></span>, unlike in the local case <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span> where the global minimizer has typically compact support. We also show that if <span><math><mi>V</mi></math></span> decays sufficiently fast the global minimizer is sign-changing even if <span><math><mi>V</mi></math></span> is non-negative. In such regimes we establish a relation between the positive part of the global minimizer and the support of the minimizer of the energy constrained to the cone of non-negative functions. Our study is motivated by recent models of charge screening in graphene, where sign-changing minimizers appear in a natural way.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113698"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal decay and regularity for a Thomas–Fermi type variational problem\",\"authors\":\"Damiano Greco\",\"doi\":\"10.1016/j.na.2024.113698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study existence and qualitative properties of the minimizers for a Thomas–Fermi type energy functional defined by <span><span><span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>ρ</mi><mo>)</mo></mrow><mo>≔</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mo>∬</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><mfrac><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>ρ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow><mrow><mi>d</mi><mo>−</mo><mi>α</mi></mrow></msup></mrow></mfrac><mi>d</mi><mi>x</mi><mi>d</mi><mi>y</mi><mo>−</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>d</mi><mo>∈</mo><mrow><mo>[</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mi>α</mi></mrow></mfrac><mo>,</mo><mi>∞</mi></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>V</mi></math></span> is a potential. Under broad assumptions on <span><math><mi>V</mi></math></span> we establish existence, uniqueness and qualitative properties such as positivity, regularity and decay at infinity of the global minimizer. The decay at infinity depends in a non-trivial way on the choice of <span><math><mi>α</mi></math></span> and <span><math><mi>q</mi></math></span>. If <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span> the global minimizer is proved to be positive under mild regularity assumptions on <span><math><mi>V</mi></math></span>, unlike in the local case <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span> where the global minimizer has typically compact support. We also show that if <span><math><mi>V</mi></math></span> decays sufficiently fast the global minimizer is sign-changing even if <span><math><mi>V</mi></math></span> is non-negative. In such regimes we establish a relation between the positive part of the global minimizer and the support of the minimizer of the energy constrained to the cone of non-negative functions. Our study is motivated by recent models of charge screening in graphene, where sign-changing minimizers appear in a natural way.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"251 \",\"pages\":\"Article 113698\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24002177\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究由 Eα(ρ)≔1q∫Rd|ρ(x)|qdx+12∬Rd×Rdρ(x)ρ(y)|x-y|d-αdxdy-∫RdV(x)ρ(x)dx 定义的托马斯-费米型能量函数的最小值的存在性和定性性质、其中 d∈[2,∞),α∈(0,d),q∈(2dd+α,∞),V 是一个势。根据对 V 的宽泛假设,我们确定了全局最小值的存在性、唯一性和定性特性,如正向性、正则性和无穷大时的衰减。如果α∈(0,2)和q>2,全局最小值在 V 的温和正则性假设下被证明为正值,这与局部情况 α=2 不同,在局部情况下,全局最小值具有典型的紧凑支持。我们还证明,如果 V 的衰减速度足够快,即使 V 为非负,全局最小值也会发生符号变化。在这种情况下,我们建立了全局最小值的正向部分与约束于非负函数锥的能量最小值的支持之间的关系。我们的研究受到石墨烯中电荷筛选的最新模型的启发,在这些模型中,符号变化最小化以一种自然的方式出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal decay and regularity for a Thomas–Fermi type variational problem
We study existence and qualitative properties of the minimizers for a Thomas–Fermi type energy functional defined by Eα(ρ)1qRd|ρ(x)|qdx+12Rd×Rdρ(x)ρ(y)|xy|dαdxdyRdV(x)ρ(x)dx,where d[2,), α(0,d), q(2dd+α,) and V is a potential. Under broad assumptions on V we establish existence, uniqueness and qualitative properties such as positivity, regularity and decay at infinity of the global minimizer. The decay at infinity depends in a non-trivial way on the choice of α and q. If α(0,2) and q>2 the global minimizer is proved to be positive under mild regularity assumptions on V, unlike in the local case α=2 where the global minimizer has typically compact support. We also show that if V decays sufficiently fast the global minimizer is sign-changing even if V is non-negative. In such regimes we establish a relation between the positive part of the global minimizer and the support of the minimizer of the energy constrained to the cone of non-negative functions. Our study is motivated by recent models of charge screening in graphene, where sign-changing minimizers appear in a natural way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信